/By Welcome to Botball 2017!
!
Before we get started...
1. Signin, and collect your materials and electronics.
2. KIPR staff may come around and install files as needed.
3. Charge your Wallaby batteries-WHITE to WHITE (refer to next stide)

/ - KIPR Robotics
Controller - Wallaby

1. Openthe “2017 Parts List” folder, which contains files that list
all of your Botball robot kit components. Please go through the
lists and verify that you have received everything.

2. Build the DemoBot.

Raise your hand if you need help or have questions.

Professional Development Workshop B h lr’
Page :1 © 1993 - 2017 KIPR Dt a

= : ’
/By Charging the Controller’s Battery

® For charging the controller’s battery, use only the power
supply which came with your controller.
® It is possible to damage the battery
by using the wrong charger or
excessive discharge!

®* The standard power pack is a lithium iron
(LiFe) battery, a safer alternative to lithium polymer
batteries. The safety rules applicable for recharging any
battery still apply:
®* Do NOT leave the battery unattended while charging.

® Charge in a cool, open area away from flammable materials.

Professional Development Workshop B h lr’
Page :2 © 1993 - 2017 KIPR Dt a

Color Touch Screen

Download port

KIPR Robotics Controller (microuss)
Wallaby

Power (external battery
connection)

6 Analog
(— Sensor Ports
2 Servo 25 (Port#0-5)
Motor Ports 2 Motor Ports 10 Digital 2 Motor Ports Motof:’vc;)r‘ -
(Port#0&1) (Port#0&1) gensor Ports (Port # 2 & 3) (Port # 2 & 3) Power Switch

(Port#0-9)

Professional Development Workshop E h ll‘”
Page :3 © 1993 - 2017 KIPR Dt a

Making the Connection

All connections are as follows:
* Yellow to Yellow (battery to controller)
 White small to White small (charger to battery)

e Black to Black (motors, servos, sensors)

Professional Development Workshop B h lr’
Page :4 © 1993 - 2017 KIPR Dt a

Wallaby Power

®* The KIPR Robotics Controller — Wallaby, uses an external battery
pack for power.

® It will void your warranty to use a battery pack with the Wallaby that hasn’t
been approved by KIPR.

® Make sure to follow the shutdown instruction on the next slide.
Failure to do so will drain your battery to the point where it can no
longer be charged. If you plug your battery into the charger and the
blue lights continue to flash then you have probably drained your
battery to the point where it cannot be charged again. You can
purchase a replacement battery from www.botballstore.org.

Professional Development Workshop B h lr’
Page :5 © 1993 - 2017 KIPR Dt a.

http://www.botballstore.org

Wallaby Power Down

* From the Software Suite select Shutdown
* Select Yes

®* From the Wallaby Home Screen press Shutdown
* Select Yes

®* Go to your Wallaby screen and check to see if it is
halted

® Slide the power switch to off AND unplug the
battery, using the yellow connectors, being careful
not to pull on the wires

Professional Development Workshop B h lr’
Page :6 © 1993 - 2017 KIPR Dt a.

Build the DemoBots

(Found on the team Homebase under 2017 team

recolirces)

Professional Development Workshop B h lr’
Page :7 © 1993 - 2017 KIPR Dt a.

]
!

S Hi! 'm Botguy, the Botball mascot!

¥

{ I‘la\'J
il

Botball 2017

Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)
with significant contributions from KIPR staff
and the Botball Instructors Summit participants

v2017.01.06-2

Professional Development Workshop E h ll“’
Page :8 © 1993 - 2017 KIPR Dt a.

Thank you for participating!

We couldn’t do it without you!

KIPR’s mission is to:

* improve the public’s understanding of science, technology, engineering, and math;
* develop the skills, character, and aspirations of students; and
® contribute to the enrichment of our school systems, communities, and the nation.

Professional Development Workshop E h ll‘”
Page :9 © 1993 - 2017 KIPR Dt a

Housekeeping

® Introductions: workshop staff and volunteers

® Food: lunch is on your own

®* Workshop schedule: 2 days

Professional Development Workshop B h ll“’
Page :10 © 1993 - 2017 KIPR Dt a

Day 1 Day 2

° Botball Overview * Botball Game Review
* Getting started with the KIPR Software Suite

Motor Position Counter
* Explaining the “Hello, World!” C Program * Measuring Distance

®* Designing Your Own Program * Color Camera

* Moving the DemoBot with Motors * Moving the iRobot Create: Part 1

®* Moving the iRobot Create: Part 2

® Fun with Functions

®* Moving the DemoBot Servos

. ..) * iRobot Create Sensors
®* Repetition, Repetition: Counting

. .
®* Making Smarter Robots with Sensors Logical Operators

®* Repetition, Repetition: Reacting * Resources and Support
®* Making a Choice
* Line-following

* Homework

Professional Development Workshop B h lr’
Page :11 © 1993 - 2017 KIPR Dt a

THE SAMUEL ROBERTS

NOBLE

FOUNDATTION

iRobot /{S SOLIDWORKS

Professional Development Workshop B th lr
Page :12 © 1993 - 2017 KIPR D a

® “ Practical
Robotics
Institute

e /\Ustria

Banckirst Oklahoma
Aeronautics
To Oklahoma ¢ You: Com m i SS i on

ﬁ KIRKPATRICK FOUNDAITION

College of
$J Engineering

Hastel

€

Professional Development Workshop
Page :13 © 1993 - 2017 KIPR

SV FEIrmES I

las HITACH!
bor Life

4stem

‘\\\
‘\\\

Botball

=2 USC University of
{1V Southern California

E SOUTHERN ILLINOIS UNIVERSITiE
GROSSMONT o

COLLEGE lJNF UNIVERSITY of
NMORTH FLORIDA

NM

STATE

UNIVERSITY

Preparing people to lead extraordinary lives

Professional Development Workshop
© 1993 - 2017 KIPR

O‘ S-T-E-M Qutreach

\/ A MITRE Corporation Initiative

@ UNIVERSIETY OF

Carnegie Mellon Qatar

Vienna Institute of Technology
Austria

Botball

Botball Overview

What and when?
GCER and ECER
Preview of this year’s game
Homework for tonight

Professional Development Workshop E h ll‘”
Page :15 © 1993 - 2017 KIPR Dt a

What is Botball?

® Produced by the KISS Institute for Practical Robotics (KIPR), a
non-profit organization based in Norman, OK.

®* Engages middle and high school aged students in a team-oriented
robotics competition based on national education standards.

® By designing, building, programming, and documenting robots,
students use science, technology, engineering, math, and writing
skills in a hands-on project that reinforces their learning.

Professional Development Workshop B h lr’
Page :16 © 1993 - 2017 KIPR Dt a

When is Botball?

2016 FALL Jan. — Mar. 7 — 9 Weeks Mar. - Jun. July 2&17

’ V4 /

* Prof. Dev. workshops. * Regional tournaments.

o o o
* Recruit teams. * Design, build, & program * Global Conference on

* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

Professional Development Workshop B h lr’
Page :17 © 1993 - 2017 KIPR Dt a

When is Botball?

2016 FALL Jan.—Mar. 7 -9 Weeks Mar. = Jun. July 2017
@ / >
* Prof. Dev. workshops. * Regional tournaments.
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

YOU ARE HERE!

® Provides the skills and tools necessary to compete in the tournament.
®* Teams will learn to program robots, and will leave with working systems.
* Skills and tools/equipment are kept and are reusable outside of Botball.

®* Not a standalone curriculum! Goal is to support team success in Botball!

(For building and programming resources, visit the Team Home Base.)

Professional Development Workshop B h lr’
Page :18 © 1993 - 2017 KIPR Dt a

When is Botball?

2016 FALL Jan. — Mar. 7 — 9 Weeks Mar. - Jun. July 2&17
®
* Prof. Dev. workshops. * Regional tournaments.
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

®* Reinforces computational thinking and the engineering design process.
®* Teams must submit three online project documents, which count for points.

® Online support throughout the season from KIPR and other Botball teams.

Professional Development Workshop B h lr’
Page :19 © 1993 - 2017 KIPR Dt a

When is Botball?

2016 FALL Jan.—Mar. 7 -9 Weeks Mar. = Jun. July 2017
@ / >
* Prof. Dev. workshops. * Regional tournaments.
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

® Practice: teams test and calibrate robot entries on the official game boards
® Seeding rounds: teams compete against the task to score the most points
* Double elimination (DE) rounds: teams compete head-to-head

* Alliance matches: teams eliminated in DE pair up to score points together

®* Onsite documentation: 8-minute technical presentation to judges

Professional Development Workshop B h lr’
Page :20 © 1993 - 2017 KIPR Dt a

When is Botball?

2016 FALL Jan. — Mar. 7 — 9 Weeks Mar. - Jun. July 2&17
®
* Prof. Dev. workshops. * Regional tournaments.
o
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

Global Conference on Educational Robotics (GCER)

® International Botball Tournament: all teams are invited to participate

® Paper presentations: students may submit and present papers at GCER

Guest speakers: presentations from academic and industry leaders

®* Autonomous showcase: students display projects in a science fair style

YOU ARE ALL ELIGIBLE!
rofesione Delopment Workshop Botball

GCER-2017

* Norman, Oklahoma

e July 8-12, 2017

* International Botball Tournament
 Autonomous Robotics Showcase

) smnnnnns B
= T
sl W

= .
= EEEEEE.E
=
=

 Meet and network with students from
around the country and world

* Talks by internationally recognized
robotics experts

 Teacher, student, and peer reviewed

track sessions

http://gcer.net
Professional Devel t Worksh ®
page 22 O 1983 2017 KIPR T Botball

http://www.kipr.org/gcer

GCER-2017

Preconference classes on July 7t
International Junior Botball Challenge

KIPR Open Autonomous Robotics Game
e Botball for grown-up kids!

Autonomous
Aerial

Vehicle
Competition

Professional Development Workshop E h ll“’
Page :23 © 1993 - 2017 KIPR Dt a.

ECER-2017

European Conference on Educational Robotics

* Sofia Tech Park * European Botball Competition
Sofia, Bulgaria
* April 24-28, 2017 * Talks by Researchers and Students

v LuIvpsail

Conference on i

HA
03 PROILPHA
3 S, : " cational S
¥ [- (L] Py l -
e H j N a |
tgm’ : e o
S 1% e ey :
L | mas a0 ey L e ¥ 8 5t : ‘ i
rm Im | ‘N i o - B RO[PHA
i it
[LrHA : % = ¢ g m
I 2 »
my u P A
S
§

Robotics
Institute

e /\|I5tria
www.pria.at

Professional Development Workshop B h ll“’
Page :24 © 1993 - 2017 KIPR Dt a

ge
p -
O
O
o
)
&
(4%
oT0)
0
L
afd
O
(aa)]

3

®
© 1993 - 2017 KIPR EDthall

Professional Development Workshop

: 25

Page

Homework for tonight

Review the game rules on your Team Home Base
®* We will have a 30-minute Q&A session tomorrow.

* After the workshop, ask questions about game rules in
the Game Rules Forum.
® You should regularly visit this forum.
®* You will find answers to the game questions there.

Professional Development Workshop B h lr’
Page :26 © 1993 - 2017 KIPR Dt a

Welcome to the Botball Team Home Base

2017 Team Home Base

The Team Home Base is your resource for:

e Botball online project documentation
e Botball game FAQs
e Other Botball game related resources

Professional Development Workshop E h ll‘”
Page :27 © 1993 - 2017 KIPR Dt a.

http://homebase.kipr.org/

\“t\;fﬁ‘ Preview of this year’s Botball game

Robots Assisting a Modern Agricultural Operation

Managing a modern agricultural operation is hard work,
but with the use of robotic technologies, the operations can
become more efficient in their cultivation and use of
resources, in particular water and fertilizer. It is planting
time and Agrobot has just finished getting the family farm
ready.

Hold your questions!

Game Q&A is tomorrow!

Professional Development Workshop B h lr’
Page :28 © 1993 - 2017 KIPR Dt a

Getting Started with the KIPR Software Suite

What is a programming language?
How can | create new projects and files?
How can | write and compile source code?
How can | run programs on the KIPR Wallaby?

Professional Development Workshop E h ll“’
Page :29 © 1993 - 2017 KIPR Dt a

®* Computers only understand machine language (stream of bytes),
which computers can read and execute (run).

®* Unfortunately, humans don’t speak machine language...

Professional Development Workshop E h ll‘”
Page :30 © 1993 - 2017 KIPR Dt a

Y , Programming Machine
|| - Language Language
Qsm‘j

>

®* Humans have created programming languages that allow them (humans) to

write “source code” that is easier for them (humans) to understand.

® Source code is compiled (translated) by a compiler (part of the KIPR Software

Suite) into machine language so that the computer can read and execute (run)
the code.

®* Programming languages have funny names (C, C++, Java, Python, ...)

Page

Professional Development Workshop E h ll‘”
:31 © 1993 - 2017 KIPR Dt a

Connect the Wallaby to your computer

at Workshop and Tournament

 Connect the Wallaby to your computer using USB Cable
1. Plug battery into Wallaby- YELLOW TO YELLOW.
2. Turn on the Wallaby with the black switch on the side

1 _ 2 Attach
Put micro USB to
USB end here computer

1. Once your Wallaby has booted, the Wallaby will appear in the list of
available Ethernet connections for your computer.

2. If you get a message about the driver raise your hand for help or go to the
team home base- Troubleshooting- USB driver for instructions

Professional Development Workshop E h ll‘”
Page :32 © 1993 - 2017 KIPR Dt a.

\“‘t\;ﬁ* Loading the Starting Web Page (USB) K

1. Launch your web browser (such as Chrome or Firefox)
and power up your Wallaby.

2. Copy this IP address into your browser’s address bar
followed by “:” and port number 8888; e.g.,

‘192.168.124.1':l8888'
P adc'zlress Po'rt #
3. Note that USB cable IP address is 192.168.124.1:8888

4. The user interface for the package will now come up in
your browser.

Professional Development Workshop B h lr’
Page :33 © 1993 - 2017 KIPR Dt a

Connect the Wallaby to your computer,

Smart Phone or Tablet At School

« Connect the Wallaby to your Browser device via Wi-Fi
 Thisis great at home or School
* Not recommended at Large Workshops or any Tournament

1. Turn on the Wallaby with the black switch on the side

Wallaby vid4

Copyright (C) 2012 - 2016
KISS Institute for Practical Robotics

Developers ——— Wi-Fi Info

1. Use the info (Wallaby # and Pass Word) in the about page to connect via Wi-Fi

Professional Development Workshop E h ll“’
Page :34 © 1993 - 2017 KIPR Dt a.

Connection

When you are connected to your Wallaby,

 settings Wi your device may give various errors; “no
o internet connection” or “connected with
cio | limited..”
J— e O In the bottom right corner of the KIPR IDE
ATT3LUARY s @ there is an icon that shows if you are still
CoxWiFi =@ connected to the Wallaby.
DF995C a= J
HCS as ()
HCS - 5G a= O
KIPR as ()
KIPR Guest = (D
Other... connected —);“"51:;;;

Professional Development Workshop
Page :35 © 1993 - 2017 KIPR

\‘“\\E;f!’f‘ Loading the Starting Web Page (Wi-Fi) K

1. Launch a web browser such as Chrome or Firefox and
power up your Wallaby. Note that Internet Explorer
will not work. Connect to the Wallaby via Wi-Fi.

2. Copy this IP address into your browser’s address bar
followed by “:” and port number 8888; e.g.,

192.168.125.1:8888

| 1
IP address Port #
4. The user interface for the package will now come up in
your browser.

5. You may use a computer, tablet or even a smart phone
through Wi-Fi.

Professional Development Workshop B h lr’
Page :36 © 1993 - 2017 KIPR Dt a

How can | write and compile

my own source code?

00® < im| (§] 192.166.125.1:8888 & O h o

To make it easier for you to

learn and use a programming
language, KIPR provides a

: 4 Fun 8 user program
web-based Software Suite
which will allow you to write _

Edit and compile programs for the device

and compile source code using
the C programming language. | ==

About Settings
e Display the About page } Modify the system's settings, such as networl, time,
and more.

User Preferences

The development package will | | & =gz
work with almost any web
browser except Internet
Explorer.

I Shutdown Terminal
U Shuts down the System >_ Opens a terminal to the target

Hest Filesystam

Hust filesystem manager

Professional Development Workshop E h ll‘”
Page :37 © 1993 - 2017 KIPR Dt a

1. Click on the KISS IDE button.

192.168.125.1:8888 <

Runiner

4 Rums & usar program

KISS IDE
Edit and compile programs for the device

NOTE: The buttons might be in different locations depending on device type.

Professional Development Workshop B h lr
Page :38 © 1993 - 2017 KIPR Dt a.

1. Addanew user folder by clicking the + sign in
the Project Explorer.

2. Name your new user folder by the student’s
name to help organization. All of your
different projects will go into this user folder.

Create New User

ser Name

Student Name

Professional Development Workshop
Page :39 © 1993 - 2017 KIPR

3.

Project cao'~rer
Default User

+ Add Project

Click Create to complete.

Botball

Creating your first project

1. Go back to Project Explorer and select the User
Name you created from the drop down. This is
the folder you created.

2. Click +Add Project. You are adding a project to Project Explorer
your folder.

v Default User
Carol ann Folder
Sarah Folder

HelloWorld

Project Explorer =

‘ arah Folder - -

+ Add Project

Professional Development Workshop B h lr
Page :40 © 1993 - 2017 KIPR Dt a

Name your project

1. Give your project a descriptive name

* Note: you will have a lot of student’s projects, so consider using their first
name followed by the name of the activity.

2. Give a descriptive Source File Name as well. The Source File
needs to end with a .c
« Then press the Create button.

Create New Project

Project name
My First Project|

Programming Language

:]

Source file name

main.c

Professional Development Workshop E h ll“’
Page :41 © 1993 - 2017 KIPR Dt a.

1. Click the Compile button for your project and, if successful, click
Run so you can run your project to see if it works.

/ [) 192.168.123.240:8888/%/>. X N

€ C | [} 192.168.123.240:8888/#/apps/kiss?project=workshop&file=main.c&ca Q ¢

workshop
print¥(“Helloc Worldin"); Include Files

+ Add File

Source Files

NOTE: When you compile, your project is automatically saved.

Professional Development Workshop E h ll‘”
Page :42 © 1993 - 2017 KIPR Dt a

Page

143

Note: one project = one program.

* Click the + Add Project button or click the Menu button to return
to the starting menu.

* Proceed as before.

* The Project Explorer panel will show you all of the user folder
projects and actively edited files.

KIPR Software Suite

a \ +

(- () | 192.168.125.1:8888/#/apps/kiss?project=My First Project&file=main.c&cat=src

@ Q search
[[2 & = %
Save main.c File Menu

Project Menu Undo Redo Indent

Compile My First Project Run

File: main.c

1 #include <kipr/botball.h>

2

3 int main()

4 {

5 printf("Hello World\n");
return 0;

71}

8

Source Files

[main.c

Professional Development Workshop

®
© 1993 - 2017 KIPR EDthall

Explaining the “Hello, World!” C Program

Program flow and the main function
Programming statements and functions
Comments

Professional Development Workshop E h ll‘”
Page :44 © 1993 - 2017 KIPR Dt a

“Hello, World!”

1 #include <kipr/botball.h>

2
3 int main()

d l . . !

{ I Note: We will use this template !

5 printf("Hello World\n"); | every time; we will delete lines |

’ . |

6 return 0: L we dgn t want, and we will |

~ ' addlines that we do want. |

] } L e e e e e o e e e e M M e |
8

Professional Development Workshop B h lr
Page :45 © 1993 - 2017 KIPR Dt a

Top

\4

Bottom

Page

Program flow and line numbers

Print ”Hello, World'”

#include <kipr/botball.h>

int main() <v}
{ Return 0.
printf("Hello World\n");
return 0;
}
Computers read a program just like you read a book—
they read each line starting at the top and go to the bottom.
Computers read incredibly quickly—
approximately 800-million lines per second!
Professi | Devel t Worksh ®
oessions evelopment Warkahop Botball

Source code

1 #include <kipr/botball.h>

2

3 int main()

4 {

5 printf("Hello World\n");
b return 0;

7}

o

This is the source code for our first C program.

Let’s look at each part of the source code.

Professional Development Workshop E h lr
Page :47 © 1993 - 2017 KIPR Dt a

The main function

A function defines a list of actions to take.
A function is like a recipe for baking a cake.
When you call (use) the function,
the program follows the instructions and bakes the cake.

// Created on Thu January 10 2017

€«———This isthemain () function.

|
|
|
|
! printf("Hello, World!\n");
I return 0O;

|

|

R When you run your program,
the main function is executed.

A C program must have
exactly onemain () function.

Professional Development Workshop B h ll“’
Page :48 © 1993 - 2017 KIPR Dt a

Block of code

The list of actions that the function takes is defined inside a block of
code.

// Created on Thu January 10 2017

| int main() €— Block Header This is a block of code.

e e —— e S Emm M Smm e Emm e mmm e mmm

Begin —3¢{

! printf ("Hello, World'\n");
I return 0O;
|

A block of code should
always be preceded by
__________________________ a block header, which is
the line just above the {.

A block is defined between a
beginning curly brace { and an
ending curly brace }.

Professional Development Workshop E h ll“’
Page :49 © 1993 - 2017 KIPR Dt a.

Programming statements

Inside the block of code
// Created on Thu January 10 2017 (between the { and } braces),
we write lines of code called

int main
in in() programming statements.

Statement #2 > ireturn 0; <€ Each programming statement
} is an action to be executed by
the computer (or robot)
in the order that it is listed.

Statement #1 - .prlntf("Hello, Worldl\n")l \

There can be any number of
programming statements
within a block of code.

Professional Development Workshop E h ll“’
Page :50 © 1993 - 2017 KIPR Dt a.

Page

:51

Ending a programming statement

// Created on Thu January 10 2017

int main ()

{ - .
printf ("Hello, World!\n")) Each programming statement
pe Vo . .
return Of; (<€ \ ends with a semicolon ;
} (unless it is followed by a new

block of code).

This is similar to an English sentence, which ends with a period.

If an English statement is missing a period, then it is a run-on sentence.

Professional Development Workshop E h ll“’
© 1993 - 2017 KIPR Dt a

Ending the main function

// Created on Thu January 10 2017

int main ()

(The main function ends with a
printf ("Hello, World!'\n"); return statement, which is a
\return 0;! <€ response or answer to the

,i\ computer (or robot).

In this case, the “answer” back
The return statement is the to the computer is

last line before the } brace.

Professional Development Workshop E h ll“’
Page :52 © 1993 - 2017 KIPR Dt a.

Comments

The green text at the top of the program is called a “comment”.

I// Created on Thu January 10 2017. Comments are helpful notes
______________________________ that can be read by you or
your team—they are ignored
printf ("Hello, World!\n"); (not read) by the computer!

return ;

int main ()

{

Professional Development Workshop E h ll“’
Page :53 © 1993 - 2017 KIPR Dt a.

Text color highlighting

The KISS IDE highlights parts of a program to make it easier to read.
(By default, the KISS IDE colors your code and adds line numbers.)

* Includes in purple — File: main.c

\f #include <kipr/botball.h>

® Commentsin green —3 // Commenting for the flow of code

3 int main()

® Text strings appearinred——___4 {
-E--‘EFTEET?”Hellﬂ Worldi\n");

= > return 0;
T}
g

Keywords appear in blue

Professional Development Workshop E h lr
Page :54 © 1993 - 2017 KIPR Dt a

Print your name

Description: Write a program for the KIPR Wallaby that prints your name.

Solution:

Source Code Flowchart

y

int main ()

{] [Print your name.]
// 1. Print your name.

printf ("Botguy\n") ;

// 2. End the program.
return 0O;

ik

Professional Development Workshop E h ll‘”
Page :55 © 1993 - 2017 KIPR Dt a.

Designing Your Own Program

Breaking down a task
Pseudocode, flowcharts, and comments
wait for milliseconds function
Debugging your program

Professional Development Workshop E h ll‘”
Page :56 © 1993 - 2017 KIPR Dt a

i Complex tasks - simple subtasks
0=

®* Break down the objectives (complex tasks) into smaller objectives
(simple subtasks).

®* Break down the smaller tasks into even smaller tasks.
Continue this process until each subtask can be accomplished by a

list of individual programming statements.

®* For example, the larger task might be to make a PB&J Sandwich
which has smaller tasks of getting the bread and PB&J ready and
then combining them.

Professional Development Workshop B h lr’
Page :57 © 1993 - 2017 KIPR Dt a

Practice printing

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!” on one line, and then prints your name on the next line.

Analysis: What is the program supposed to do?

Flowchart
\/

[Print “Hello, World!”]

Pseudocode Comments

1. Print “Hello, World!” // 1. Print “Hello, World!”

2. Print your name. // 2. Print your name. [- N/]
rint your name.
3. Endthe program. // 3. End the program. r
|m———————mmm———— | [Return 0.]
! In English, T T T T

1

| 1
' write a list of actions | ! :

I |

.

Professional Development Workshop B h ll“’
Page :58 © 1993 - 2017 KIPR Dt a

Practice printing

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

®* Note: remember to give your project and file descriptive (unigue) names!

Source Code

--" int main/()
Pseudocode (Comments) T {
- // 1. Print “Hello, World!'”
printf ("Hello, World!\n");

int main ()

{ >
: A\Y V7 °
;; ; Er}nt aeto, Morid! Helps you write // 2. Print your name.

// 3. End the program.
}

// 3. End the program.
~~~~ return

Execution: Compile and run your program on the KIPR Wallaby.

Professional Development Workshop E h ll‘”
Page :59 © 1993 - 2017 KIPR Dt a.



Practice printing

Reflection: What did you notice after you ran the program?

®* The Wallaby reads code and goes to the next line faster than a blink of your eye.
At 800MHz, the Wallaby is executing millions of lines of code per second!

To control a robot, sometimes it is helpful to wait for some duration of time
after a function has been called so that it can actually run on the robot.

To do this, we use the built-in function called wait for milliseconds(),
later this can be shortened to msleep ()

Let’s use this!

Professional Development Workshop B h ll“’
Page :60 © 1993 - 2017 KIPR Dt a



Usingwait for milliseconds

int main()

{
printf ("slow ");

wait for milliseconds ( ); // wait for 2500 ms
printf ("printer\n");
return

\

What is this?

Another name for wait for milliseconds () ismsleep ().
It is identical and shorter to type, but more difficult to remember.

msleep ( ) isthe same aswait for milliseconds ( ).

Professional Development Workshop B h ll“’
Page :61 © 1993 - 2017 KIPR Dt a



Waiting for some time

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!” on one line, waits two seconds, and then prints your name
on the next line.

Flowchart
. : 5
Analysis: What is the program supposed to do:

\/

[ Print “Hello, World!” ]

Pseudocode Comments

1. Print “Hello, World!” // 1. Print “Hello, World!”

& VYaltior 2 5econts. /7 2. Wait for 2 seconds. Y N -
3. Print your name. // 3. Print your name. [ Print your name. ]
4. End the program. // 4. End the program.

\/

Professional Development Workshop B h ll“’
Page :62 © 1993 - 2017 KIPR Dt a




Waiting for some time

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

®* Note: remember to give your project and file descriptive (unigue) names!

Source Code

-7 int main()

e {
Pseudocode (Comments) -7 // 1. Print “Hello, World!”
printf ("Hello, World!\n");

int main ()

{

// 2. Wait for 2 seconds.

// 1. Print “Hello, World!'” ) . .

// 2. Wait for 2 seconds wait for milliseconds ( ) ;
3. Print your name. .

;; 4. End ch program // 3. Print your name.

}

printf ("Botguy\n") ;

// 4. End the program.
return

Execution: Compile and run your program on the KIPR Wallaby.

Page

:63

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Waiting for some time

Reflection: What did you notice after you ran the program?

® Did your code work the first time you typed it in?

® Did you have any errors?

Professional Development Workshop E h ll‘”
Page :64 © 1993 - 2017 KIPR Dt a.



Debugging Errors

I ERROR !!!

® |f you do not follow the rules of the programming language, then
the compiler will get confused and not be able to translate your
source code into machine code—it will say “Compile Failed!”

®* The Wallaby will try to tell you where it thinks the error is located.
®* The process of trying to resolve this error is called “debugging”.

®* To test this, remove a ; from one of your programs and compile it.

Professional Development Workshop B h lr’
Page :65 © 1993 - 2017 KIPR Dt a



Debugging Errors

line # : col # (the error is on or before the line # 6)

Jhome/root/Documents/KIS5/Default User/hey/s rc!main.& Irénctinn ‘main':
fhome/root/Documents/KISS/Default User/hey/src/main.c:6:5: error: expected ';' before 'return'

return @; A

[———===-= » “ expected ; ” (semicolon)
File: main.c
1 #include <kipr/botball.h> |
2 I ———————————————————————————————————— -
|
3 int main() | When there is an error, you can ignore the first error line |
- . . |
! I (“In function ‘main’”)and read the next to see what |
5 printf("Hello World\n") € = = = = he fi i If h | f fixi 1
. retarn 0 : the first error is. yo.u ave a otp errors, start fixing ]
7} , them from the top going down. Fix one or two and :
8 | recompile. [
L |
______________________________________________________ .

gEEEEE .,
/\60 mpilation Falle::l)
-~ -

—-— =

JShome/root/Documents/KISS5/Default User/hey/src/main.c: In function '‘main’:

| |
| |
| 1
| |
| |
| Compilation Failed |
| |
| |
| |
| /fhome/root/Documents/KIS5/Default User/hey/src/main.c:6:5: error: expected ';' before 'return’

Professional Development Workshop E h lr
Page :66 © 1993 - 2017 KIPR Dt a



Moving the DemoBot with Motors

Plugging in motors (ports and direction)
motor functions

Professional Development Workshop E h ll‘”
Page :68 © 1993 - 2017 KIPR Dt a



®* To program your robot to move, you need to know
which motor ports your motors are plugged into.

®* Computer scientists start counting at 0, so the motor
ports are numbered 0, 1, 2, and 3.

Professional Development Workshop B h ll“’
Page :69 © 1993 - 2017 KIPR Dt a



: Motor Labels are -
L _ | on the Case el E s %

Motor Ports 0, 1, 2, and 3

Professional Development Workshop B th lr
Page :70 © 1993 - 2017 KIPR D a



Plugging in motors

®* Motors have red wire and a black wire with a two-prong plug.
®* The Wallaby has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.

® When a port is powered (receiving motor commands), it has a light that glows
green for one direction and red for the other direction.

® Plug orientation order determines motor direction.
®* By convention, green is forward (+) and red is reverse (-).

Motor Port #2

. Drive motors have
Motor Port #3 a two-prong plug.




DemoBot Motor Ports 0 (left wheel) and 2 (right wheel)

Professional Development Workshop E h lr
Page :72 © 1993 - 2017 KIPR Dt a



Motor direction

You want your motors going in the same direction;
otherwise, your robot will go in circles!

® Motors have red wire and a black wire with a two-prong plug.

®* There is no left side or right side.

® You can plug these in two different ways:
® One direction is clockwise, and the other direction is counterclockwise.
®* The red and black wires help determine motor direction.

=

Professional Development Workshop B h lr’
Page :73 © 1993 - 2017 KIPR Dt a

12 21



There is an easy way to check this!

®* Manually rotate the tire, and you will see an LED light up by the motor port
(the port # is labeled on the board).

® If the LED is green, it is going forward (+).
® Ifthe LED is red, it is going reverse (-).

® Use this trick to check the port #'s and direction of your motors.

® |f one is red and the other is green,
turn one motor plug 180° and plug it back in.

®* The lights should both be green if the robot is moving forward.

Professional Development Workshop E h lr
Page :74 © 1993 - 2017 KIPR Dt a



L2 Motors and Sensors

About ]L Shut Down ]

(tome J

[. - Programs ]
> [ o Motors and Sensors [
[‘> 2 Settings J

R
B MM‘M:M R A

Sensor Graph J

>[ & Motors

[o Servos

Sensor List

ik 87%

[hss%

Page

:75

L2 Motors

Back L Clear Position |

=

[ @ Motor 0

v JPosition:

|

"o Sto P

0

Power | & Velocity

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Common motor functions

There are several functions for motors.

------------- . We will begin with motor.
Motor port # !

(between 0 and 3)

motor (0, ) — e e -

A positive number should drive
the motor forward; if not,
rotate the motor plug 180°.

// Turns on motor port #0 at 100% power.
// Select any power between -100% and 100%.

A negative number should

wait for milliseconds( ), .
- - drive the motor reverse.

// Wait for the specified amount of time.

If two drive motors are plugged
in in opposite directions from
each other, then the robot will
go in acircle.

ao();
// Turn off all of the motors.

Professional Development Workshop E h ll‘”
Page :76 © 1993 - 2017 KIPR Dt a.



Using motor and ao

int main ()
{
motor (O, ) ;
wait for milliseconds ( ),
ao();
return 0O;
}

Professional Development Workshop

®
Page :77 © 1993 - 2017 KIPR EDthall



Until you are familiar with the functions that you will be using,
use this cheat sheet as an easy reference.

Copying and pasting your own code is also very helpful.

printf ("text\n") ; //
wait for milliseconds (# milliseconds) ; //
msleep (# milliseconds) ; //
motor (port #, % velocity); //
motor power (port #, % power); //
mav (port #, velocity); //
mrp (port #, velocity, position); //
ao(); //
enable_servos() ; //
disable_servos(); //
set_servo_position(port #, position); //
wait for light(port #); //
wait for touch(port #); //
analog (port #) //
digital (port #) //
shut_down_in(time in seconds); //

Prints the specified text to the screen

Waits

specified number of milliseconds before next line

Another name for wait for milliseconds (identical)

Turns
Turns

on motor with port # at specified % velocity
on motor with specified port # at specified % power

Move motor at specified velocity (# ticks per second)
Move motor to specified relative position (in # ticks)
All off; turns all motor ports off

Turns
Turns
Moves
Waits
Waits
Get a
Get a
Shuts

on servo ports

off servo ports

servo in specified port # to specified position
for light in specified port # before next line
for touch in specified port # before next line
sensor reading from a specified analog port #
sensor reading from a specified digital port #
down all motors after specified # of seconds

Professional Development Workshop
Page :78 © 1993 - 2017 KIPR

Botball




Page

Access the Wallaby documentation by selecting the Help button in the KISS IDE

ece g KIPR Software Suite x \ +
€ | (D | 192.168.125.1:8888/#/apps/kiss?project=My First Projectéfile=main.c&cat=src & Q Search
Save main.c File Menu  Project Menu Undo Redo Indent Compile My First Project Bun

#include <kipr/botball.h>

1

2

2 int main()

44

5 printf(“Hello World\n");
6 return 0;

8

I}

Project Explorer b5
Student Name Fol =8 2

+ Add Project

My First Project
Source Files

(Y main.c

Professional Development Workshop
:79 © 1993 - 2017 KIPR

Botball



Moving the DemoBot

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward at 80% power for two seconds, and then stops.

Analysis: What is the program supposed to do? Flowchart
Pseudocode Comments , \/ ‘
1. Drive forward at 80%. // 1. prive forward at 80%. D”"ef”ia;j e
2 Wait for 2 seconds. // 2. wait for 2 seconds. f X )

Wait for 2 seconds.
3. Stop motors. // 3. Stop motors. y 7 g
4 End the program. // 4. End the program. [ Stop motors. ]

\/

Professional Development Workshop B h ll“’
Page :80 © 1993 - 2017 KIPR Dt a



Moving the DemoBot

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

®* Note: remember to give your project and file descriptive, unigue names!
Source Code

_-- int main()
--7 {
Psuedocode (Comments) - // 1. Drive forward at 80%.
motor (0, )
int main () motor (=, )7

{

// 1. Drive forward at 80%. // 2. Wait for 2 seconds.

// 2. Wait for 2 seconds. wait for milliseconds ( ),
// 3. Stop motors.

// 4. End the program. // 3. Stop motors.

IR

ao();

// 4. End the program.
return 0;

Execution: Compile and run your program on the KIPR Wallaby.

Page

: 81

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Moving the DemoBot

Reflection: What did you notice after you ran the program?

® Did the DemoBot move forward?

® Positive (+) numbers should move the motors in a clockwise direction
(forward); if not, rotate the motor plug 180° where it plugs into the
Wallaby.

* If your robot moves in a circle, one motor is either not moving (is it plugged
in?) or they are moving in opposite directions (rotate the motor plug 180°).

® Did the DemoBot drive straight?
®* How could you adjust the code to make the robot drive straight?
®* How can you make the robot drive backwards?

® How can you make the robeddtisial befépndrighkidnop BDthaw

Page :82 © 1993 - 2017 KIPR



Robot driving hints

Remember your # line:
positive numbers (+) go forward and negative numbers (=) go in reverse.

< Reverse Forward >

J || |
AL

L 1 I |
1 T 1T 1
10 9 8 -7 6 5 -4 3 2 -

Driving straight: it is surprisingly difficult to drive in a straight line...
Problem: Motors are not exactly the same. |} ----------- |

1
Problem: The tires might not be aligned perfectly. | And many, many |
; other reasons... |

®* Problem: One tire has more resistance. el .
® Solution: You can adjust this by slowing down or speeding up the motors.
Making turns:

® Solution: Have one wheel go faster or slower than the other.
® Solution: Have one wheel move while the other one is stopped.

®* Solution: Have one wheel move forward and the other wheel move in reverse
(friction is less of a factor when both wheels are moving).

Professional Development Workshop B h ll“’
Page :83 © 1993 - 2017 KIPR Dt a



" Activity 1 (connections to the game)

You have a paper copy of this activity in your registration packet.

1. Start with DemoBot completely within the starting box on mat A.

2. Recover 4 poms and a yellow foam brick that start out within the
nearest garage or around circle 4 (12-14” away on game board or
FRP).

3. The poms and yellow brick must come to rest completely within
the starting box.

Professional Development Workshop B h lr’
Page :84 © 1993 - 2017 KIPR Dt a



Activity 1 video (possible solution)

#include <kipr/botball.h>
//motor 0 is left side is video orientation

//motor 3 is right side in video orientation
int main()

{

Professional Development Workshop
© 1993 - 2017 KIPR



Moving the DemoBot Servos

Plugging in servos (ports)
enable servos and disable servos functions

set servo position function

Professional Development Workshop E h ll‘”
Page :86 © 1993 - 2017 KIPR Dt a



* A servo motor (or servo for short) is a motor that rotates to a specified
position between 0° and 180°.

® Servos are great for raising an arm or closing a claw to grab something.

® Servo motors look very similar to non-servo motors, but there are differences...
®* Aservo has three wires (orange, red, and brown) and a black plastic plug.
®* A non-servo motor has two gray wires and a two-prong plug.

Large servo ~—

\ Small servo

Professional Development Workshop B h lr’
Page :87 © 1993 - 2017 KIPR Dt a



Servo Ports 0, 1, 2, and 3

Professional Development Workshop B th lr
Page :88 © 1993 - 2017 KIPR D a



Plugging in Servos

®* The KIPR Robotics Controller has 4 servo ports numbered 0 (left) & 1 (right) on
the left, and 2 (left) & 3 (right) on the right.

Notice that the case of the KIPR Robotics Controller is marked:

® (S) for the orange (signal) wire, which regulates servo position
® (+) for the red (power) wire
® (=) for the brown (ground) wire (“the ground is down, down is negative”)

(S) signal wire
(+) power wire
() ground wire

Servo Port #3
Servo Port #2

Professional Development Workshop E h lr
© 1993 - 2017 KIPR Dt a



Servo positions

®* Think of a servo like a protractor...
® Angles in the 180° range of motion (between 0° and 180°) are divided into
2048 servo positions.

®* These 2048 positions range from 0 to 2047, but due to internal mechanical
hard stop variability you should use 150 to 1900
(remember: computer scientists start counting with 0, not 1).

® This allows for greater precision when setting a position

(you have 2048 different positions you can choose from instead of just 180).
1024

®* The default position is 1024
(centered).

Professional Development Workshop B h lr’
Page :90 © 1993 - 2017 KIPR Dt a



lL Home ] i \‘ M ; }' .i::».u;‘ i ;....‘;3;»-‘;' e v,‘ji‘;‘

Sensor Graph J

C AR

Sensor List

B s7% 86%

[L Home JL Back ] L

Professional Development Workshop B h lr’
Page :91 © 1993 - 2017 KIPR Dt a.



Select the

servo port
The current
servo position
Enable
Servos

g

Professional Development Workshop B h lr’
Page :92 © 1993 - 2017 KIPR Dt a



Use your finger
to move the dial.

‘%H‘L; ::»‘Ei...‘ .M.% c\k i Bacx
_ Homel ck

e Portidiii 4

=) & = —=

: a2 Port @ ﬂ#]

" o Port3 ]

[k716% X O s % O 6s.5% X

Servo @ 2047 Servo @ 1513 Servo @ 537
(maxed out)

Do not push a servo beyond its limits
(less than 0 or more than 2047).
This can burn out the servo motor!

Professional Development Workshop B h ll“’
Page :93 © 1993 - 2017 KIPR Dt a



Page

Servo functions

To help save power, servo ports by default are not active until they are
enabled.

Functions are provided for enabling or disabling all servo ports.
A function is also provided for setting the position of a servo.

enable servos(); // Activate (turn on) all servo ports.
set servo position(Z, ); // Rotate servo on port #2 to position 925.
disable servos(); // De-activate (turn off) all servo ports.

Remember: the useable range of positions is from 150 to 1900.

The default position when servos are enabled is 1024 (centered), which means that all
servos will automatically move to this position when enable_servos is called.

You can “preset” a servo position by calling set _servo_position before calling
enable_servos. This will make the servo move to this position rather than center.

Professional Development Workshop B h lr’
194 © 1993 - 2017 KIPR Dt a



Using servo functions

int main ()

{

enable servos();

wait for milliseconds ( ),
set servo position(Z, ),
wait for milliseconds ( ),
set servo position(Z, ),

disable servos() ;
return 0O;

Professional Development Workshop E h ll‘”
Page :95 © 1993 - 2017 KIPR Dt a.



Using servo functions

What happens when we
set the servo position
before enable servos?

int main () //

{

set _servo position(Z, ),
enable_ servos() ;

wait for milliseconds ( ),
set _servo position(Z, ),
wait for milliseconds ( ),
set servo position(Z, ),

disable servos() ;
return 0O;

Professional Development Workshop E h ll“’
Page :96 © 1993 - 2017 KIPR Dt a.



Wave the servo arm

Description: Write a function for the KIPR Wallaby that waves the

DemoBot servo arm up and down.

®* Remember to enable the servos at the beginning of your program,
and disable the servos at the end of your program!

®* Warning: The arm mounted on your DemoBot prevents the servo from freely
rotating to all possible positions (it will run into the KIPR Wallaby controller or

the chassis of the robot)!
®* Do not keep trying to move a servo to a position it cannot reach, as this can burn out the servo
and also consume a lot of power from your robot.
® Use the Servo screen to determine the limits of the DemoBot arm, write these numbers down,
and then use these numbers in your code.

DR

Ce port3
1023 " = Disable

[ 87%

Professional Development Workshop B h lr’
Page :97 © 1993 - 2017 KIPR Dt a




Wave the servo arm

Description: Write a program for the KIPR Wallaby that waves the
DemoBot servo arm up and down. Write a function that does one
wave. Call it from your main function

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Enable servos. // 1. Enable servos.

2. Move servo to YOUR limit. // 2. Move servo to YOUR limit.

3. Wait for 3 seconds. // 3. Wait for 3 seconds.

4. Move servo to YOUR other limit. // 4. Move servo to YOUR other limit.
5. Wait for 3 seconds. // 5. Wait for 3 seconds.

6. Disable servos. // 6. Disable servos.

7. End the program. // 6. End the program.

Professional Development Workshop E h ll“’
Page :98 © 1993 - 2017 KIPR Dt a.



Analysis:

Wave the servo arm

(vs)
()
(1 &
=

[ Enable servos. ]

Move servo to YOUR limit. ]

¢

[ Wait for 3 seconds. ]

¢

[ Move servo to YOUR other limit. ]

<

[ Wait for 3 seconds. ]

<:

[ Disable servos. ]







" Activity 2 (connections to the game)

1. Start with your DemoBot at least partially within the starting box.
See extension for more practical application.

2. Using a servo controlled claw, recover a blue foam block from
circle 9 on mat A.

3. The blue foam block should be elevated off the surface while
wheel movement occurs and should be placed on the playing
surface inside of the starting box.

Professional Development Workshop B h lr’
Page :101 © 1993 - 2017 KIPR Dt a



#tinclude <kipr/botball.h>
//arm up position 314

//arm down position 1400
//claw open position 1700
//claw closed position 950

int main()

Page

Professional Development Workshop
1102 © 1993 — 2017 KIPR

Botball



Draw a square

Description: Write a program for the KIPR Wallaby that drives the
DemoBot along a path in the shape of a square.
® Start with having the robot make a 90° turn.

®* Then add in forward movements to have the robot drive along a square path.
Remember the direction your robot is taking.

Professional Development Workshop B h ll“’
Page :103 © 1993 - 2017 KIPR Dt a



Draw a square

Analysis: What is the program supposed to do? Flowchart
Pseudocode Comments v
1. Drive forward. // 1. Drive forward. T"':g;”‘
2. Turnright 90°. // 2. Turn right 90-degrees. Drive forward,
3. Drive forward. // 3. Drive forward. Tu,,};%,
4. Turnright 90°. // 4. Turn right 90-degrees. Dmxard.
5. Drive forward. // 5. Drive forward. 7
6. Turnright 90°. // 6. Turn right 90-degrees. Tum\ﬁg;w
7. Drive forward. // 7. Drive forward. D'W;f";a""
8. Turnright 90°. // 8. Turn right 90-degrees. Turn right 90°
9. Stop motors. // 9. Stop motors. sm}nf:,rs.
10. End the program. // 10. End the program. V4

Return 0.

Professional Development Workshop B h ll“’
Page :104 © 1993 - 2017 KIPR Dt a



int main()

Draw a square U)o et commare

motor (0, )
motor (3, )
wait for milliseconds ( )
SOIUtlon: // 2. Turn right 90-degrees.
motor (0, )
motor (3, )
wait for milliseconds ( )
Here is some code that uses the motor () // 3. Drive forward.
. . . . t ’ ;
and wait for milliseconds() functions matar (| 100y,
wait for milliseconds ( )

to drive the robot in a square.

// 4. Turn right 90-degrees.

motor (0, )
motor (3, )
Note: this is just one of many solutions. wait_for milliseconds(1200);
// 5. Drive forward.
motor (0, )
motor (2, ),
wait_for milliseconds( )

// 6. Turn right 90-degrees.

motor (0, );
motor (2, );
— wait for milliseconds ( )

// 7. Drive forward.

motor (0, )
motor (2, )
wait for milliseconds ( )

// 8. Turn right 90-degrees.

<€ == == = motor (0, );
motor (3, );
wait_for milliseconds( )
ao() ; // 9. Stop motors.
return 0; // 10. End the program.

} // end main



Fun with Functions

Writing your own functions
Function prototypes, definitions, and calls

Professional Development Workshop E h ll‘”
Page :106 © 1993 - 2017 KIPR Dt a



int main()

Draw a square A

. motor (0, )
Drive forward. § motor (3, 100);
wait for milliseconds ( )
RefIECtlon: // 2. Turn right 90-degrees.
Turn [ motor (0, ) ;
. . motor (3, )
Notice there are many repeated steps. right. | weic for mi11sseconds (1500) ;
For example' // 3. Drive forward.
// Drive forward. . motor (0, )
. _ Drive forward. [ motoz(z, 100);
mo or( ’ ) ’ wait for milliseconds ( )
motor (0, 22 it

// 4. Turn right 90-degrees.

wait for milliseconds ( ) Turn [ motor (0, )
. . . . . tor (3, );
... is repeated 4 times in this program! right. | waic for mi11iseconds(1500);
® Also, Turn right 90-degrees. [/ 5. Drive fomvazd,
Drive forward. [ motor(z, 100);
wait_for milliseconds( );
You will quickly learn to use copy-and- // 6. Turn right 90-degrees.
- : Turn J motor (o, )i
paste over and over again, but there is a motor (-, ) ;

. right. wait for milliseconds ( )
better and easierway... T R

// 7. Drive forward.

Drive forward. | mecorc:’ 100,
Learning to write your own functions wait_for milliseconds(1000);
allows you to reuse code easily! Turn | L05, fumn fighe s0mdegrees.
right. ﬂifzjéo;_miu)i;econds (1500) ;
00  // 9. Stop motors.
return 0; // 10. End the program.

} // end main



Page

Writing your own functions

Remember: a function is like a recipe.

When you call (use) the function, the computer (or robot) does all
of the actions listed in the “recipe” in the order they are listed.

Functions are very helpful if you take some actions multiple times:

Functions often make it easier to (1) read the ma1n function, an

driving straight forward - drive forward() ;

making a 90° left turn - turn left 90();
making a 180° turn - turn_around() ;
lifting anarm up > 1ift arm();

closing a claw - close claw() ;

\

————————————————

We made these up...
and that’s the point!

You can write your
own functions to do
whatever you want!

o

(2) change distance, turning, timing, or other values if necessary.

:108

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Writing your own functions

®* There are three components to a function:

Page

1.

:109

Function prototype: a promise to the computer that the function is
defined somewhere (an entry in the table of contents of a recipe book)

Function definition: the list of actions to be executed (the recipe)
Function call: using the function (recipe) in your program

—————————————————

void drive forward();! // function prototype
i’ ulelaialaliialnininls ! void is a data
int main () type, we will
talk about data
)'drlve forward () ; // function call types later
“return O0; """ T~

—————————————————————————

I void drive forward() // function definition
X I
I motor (0, ) !
—»  motor (3, ) :
: wait for milliseconds ( ) ; :
1 ao(); I
I I

Professional Development Workshop E h ll“’
© 1993 - 2017 KIPR Dt a



Writing your own functions

Function prototypes
go above main.

Function calls
go inside main
(or inside other

functions).

Function definitions
go belowmain.

Page :110

void drive_forward();

e

// function prototype

int main()

{
drive forward() ;
return 0O;

} // end main

void drive forward()
{
motor (O,
motor (3,

)
)

ao();

} // end drive forward

wait for milliseconds (

// function call

Use void in your
function prototype if
you are
commanding the
robot to do
something.

// function definition

) ;

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Writing your own functions

The function prototype and the function definition look the same except for one thing...
prototype

> void drive forward(); // function prototype

int main ()
{

drive forward(); // function call
return 0O;

} // end main

defiiion 3, | void drive forward() // function definition
{
motor (0, ) ; P i |
motor (7, ) ; Notice: no semicolon!
wait for milliseconds( ), (Why not?)
ao() ;

} // end drive forward

Professional Development Workshop

®
Page :111 © 1993 - 2017 KIPR EDthall



Writing your own functions

void drive forward(); // function prototype

The function prototype is a

int main () promise to the computer...
{

drive forward(); // function call @

return 0; .
} // end main ... that you will tell the

computer what to do in the
function definition.

void drive forward() // function definition

{
motor (U, )
motor (=, )
wait for milliseconds ( )
ao();
} // end drive forward

Neither the function prototype nor the function definition tell the

computer when to use the function. That is the job of the function call...
Professional Development Workshop

®
Page :112 © 1993 - 2017 KIPR EDthall



Writing your own functions

void drive forward(); // function prototype

The function call makes the
_ _ computer jump down to the
?nt main () function definition.

drive forward(); // function call
return 0O;

} // end main

void drive forward() // function definition

{ ) N
m°t°r2 ' ; i The program then executes
motor (2, ; . .
wait for milliseconds ( ) > €<— all of the lines of code in the
ao(); block of code.

} // end drive forward J

Professional Development Workshop E h ll‘”
Page :113 © 1993 - 2017 KIPR Dt a.



Writing your own functions

void drive forward(); // function prototype

int main ()
{

drive forward(); // function call

return 0O;
} // end mairx After the computer executes all of the lines of code in

the function definition, the program jumps back up to
the line of code after the function call and continues.

void drive forward() // function definition
{

motor (O, ) ;

motor (3, ) ;

wait for milliseconds ( )

This is the end } of the

2ol)/ / function definition.
} // end drive forward

Professional Development Workshop

®
Page :114 © 1993 - 2017 KIPR EDthall



Writing your own functions

// function prototypes
void drive forward() ;
void turn right();

int main ()

{

drive forward() ; // drive forward function call
turn right(); // turn _right function call
return 0O;

} // end main

void drive forward() // drive forward function definition

{

motor (O, )

motor (2, )

wait for milliseconds ( ),
ao();

} // end drive forward

void turn_right() // turn right function definition
{

motor (0, )

motor (2, )

wait for milliseconds ( ),

ao();

Page :115 } // end turn_right EDthalr




Description: Write a program for the KIPR Wallaby that drives the

DemoBot along a path in the shape of a square using functions.
® Hint: modify your old square-drawing program to use your own functions.
® Break the task down into common subtasks - these become your functions!

Professional Development Workshop B h ll“’
Page :116 © 1993 - 2017 KIPR Dt a



o o D E—m

| Code without your functions

= = =
!

Code with your functions |

— e oy

int main()
{ ™

// 1. Drive forward.

motor (0, )
motor (2, )
wait for milliseconds( ) ;

// 2. Turn right 90-degrees.

motor (0, )
motor (2, )
wait for milliseconds ( ) ;

// 3. Drive forward.

motor (0, )
motor (2, )
wait_for milliseconds( )

// 4. Turn right 90-degrees.

motor (0, );
motor (2, )
wait_for milliseconds( )

// 5. Drive forward.

motor (0, )
motor (2, )
wait_for milliseconds( )

// 6. Turn right 90-degrees.

motor (0, );
motor (2, )
wait for milliseconds ( )

// 7. Drive forward.

motor (0, )
motor (2, )
wait for milliseconds ( )

// 8. Turn right 90-degrees.

motor (0, )

motor (3, )

wait_for milliseconds( )

ao(); // 9. Stop motors.
return 0; // 10. End the program.

// Function prototype for
// drive forward and turn_right.
void drive_forward_and turn_right();

// Function definition for main.
int main()
r {
// Four function calls for
// drive_forward and turn_right.

main is shorter and
easier to read.

drive_forward and_turn_right();
< drive_forward and_turn_right();
drive_forward and_turn_right();

} // end main

drive_forward and_turn_right();
return 0O;

\. } // end main

// Function definition for
// drive_ forward and turn right.
void drive forward and turn_right()

{

// Drive forward.

motor (0, );
motor (3, );
wait_for milliseconds ( )

// Turn right 90-degrees.

motor (0, )
motor (3, )
wait_for milliseconds ( )

// Stop motors.
ao();
} // end drive_forward and turn_right



Draw a square

H ° // Function prototype for
Refl e Ct I o n ® // drive forward and turn right.

void drive forward and turn right();

1. It makes the main function easier to

// Function definition for main.

read and understand, and spotting (e maing)
. . . // Four function calls for
mISta keS IS mUCh eaSIer- // drive forward and turn right.
drive_ forward and turn_right();
2. You only have to change a value one drive_forward_and_turn _right();
_— drive forward and turn_right();
time in the function definition for it driveforuard_and_turn_right()
. } // end mai
to affect the entire program. e e
// Function definition for
®* For example, to draw a smaller square, // drive forward and turn right.
. void drive_ forward_and turn_right()
simply change the (
wait for milliseconds () valuein ;étgii(ve f°r‘)"a,‘rd’
your drive forward and turn() motor (3, 100);
. - .. — -_— wait for milliseconds ( ),
function definition from to
// Turn right 90-degrees.
motor (0, )
motor (3, )
wait for milliseconds ( ),

// Stop motors.
ao();
} // end drive forward and turn right

Professional Development Workshop E h ll“’
Page :118 © 1993 - 2017 KIPR Dt a.



Page

: 119

Create a function to wave your servo arm.

Comments

void

//
//
//
//
//
//

wave ()

. Enable servos.

Move servo to YOUR limit.

. Wait for 3 seconds.

Move servo to YOUR other limit.
. Wait for 3 seconds.

. Disable servos.

ool dWDNPE

Professional Development Workshop E h ll‘”
© 1993 - 2017 KIPR Dt a



Move the Servo using functions

Solution:

Comments
void wave ()
{
// 1. Enable servos.
// 2. Move servo to YOUR limit.
// 3. Wait for 3 seconds.
// 4. Move servo to YOUR other limit.
// 5. Wait for 3 seconds.
// 6. Disable servos.
}

Execution: Compile and run your program on the KIPR Wallaby:

Professional Development Workshop
© 1993 - 2017 KIPR

Page :120

void wave() ; Source COde

int main ()

{
wave(); // function call
return O;

} // end main

void wave()

{
// 1. Enable servos.
enable_servos() ;
// 2. Move servo to YOUR limit.
set_servo_position (0, ) ;

// 3. Wait for 3 seconds.
wait for milliseconds ( ) ;

// 4. Move servo to YOUR other

set_servo position (0, ),
// 5. Wait for 3 seconds.
wait for milliseconds ( )’

// 6. Disable servos.

Use YOUR
servo limits!

disable_servos();

}

Botball



Variables and Functions with Arguments

Data types
Creating and setting a variable
Variable arithmetic
Functions with arguments and return values

Professional Development Workshop E h ll‘”
Page :121 © 1993 - 2017 KIPR Dt a



Variables

® Avariable is a named container that stores a type of value
(remember void)

® Avariable has the following three components:
a. the type of data it stores (holds),

b. the name, and a b Use int as your
data type if you want
c. thevalue. C to store whole
int mY_CuPV numbers (integers)
my cup = I}

®* Think of a variable like a cup with your name on it...

my cup

Professional Development Workshop BDthalr

Page :122 © 1993 - 2017 KIPR



Variable names

Each variable is given a unique name so we can identify it...
® Variable names can be almost anything you would like.
® Variable names can contain letters, numbers, and underscores (“_”).
® Variable names cannot begin with a number.

An Example:

// Variable to keep a count of events.
int my variable; // variable declaration

my variable = 0; // variable “initialization”

Professional Development Workshop B h ll“’
Page :123 © 1993 - 2017 KIPR Dt a



Variables

You can set the value to any integer you choose.

int my cup; int my cup;
my cup = 3; my cup = 4;
my cup my_ cup

Professional Development Workshop B h lr’
Page :124 © 1993 - 2017 KIPR Dt a



Variables

®* So how could this be useful?

®* What if we wanted to add balls to the cup

int my cup;

my cup = 3;

my cup = my cup + 1; // now my cup is equal to 4

(=
=. 4 :

]
L]

Professional Development Workshop B h lr’
Page :125 © 1993 - 2017 KIPR Dt a



Page

When you
call this
function,
how long
will it run

for?

:126

Remember This?

void drive forward(); // function prototype

int main ()

{

drive forward() ; // function call

/ void drive forward() // function definition

{

motor (0, ) ;

motor (2, ) ;

wait for milliseconds ( ), (
ao();

What if you don’t want it to run for this long each time?

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Page

® Function arguments: values you will set when you call the
function

L2y

return 0O;
} // end main

e
motor (0, ),
motor (2, ),

wait for milliseconds (milliseconds) ;
ao();

// function prototype

// function call

// function definition

:127

Professional Development Workshop
© 1993 - 2017 KIPR

Botball




Page

:128

Writing your own functions

with arguments

void drive forward(int milliseconds); // function prototype

int main ()

{

drive forward( ); // function call
return ;
} // end main The value in the function call

sets the value of the argument...

void drive forward(int milliseconds) // function definition

{ & which is then used in the
motor (U, ) ) A
motor (3, ) ; function definition.
wait for milliseconds(milliseconds) ;
ao();

} // end drive forward

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Writing your own functions

with arguments

The function prototype and the function definition look the same except for one thing...

> void drive forward(int milliseconds); // function prototype

int main ()
{

drive forward ( ):; // function call
return 0O;

} // end main

> void drive forward(int milliseconds) // function definition
{
motor (O, ) ;
motor (2, ) ; ) .
wait for milliseconds(milliseconds) ; Notice: no semicolon!
ao(); Why not?
} // end drive forward ( y )

Professional Development Workshop

®
Page :129 © 1993 - 2017 KIPR EDthall



Writing your own functions

with multiple arguments

void drive forward(int power, int milliseconds); // function prototype

int main ()

{
drive forward (=0, ):; // function call
return 0O;

} The value in the function call
sets the value of the argument...

void drive forward(int power, int milliseconds) // function definition

{ for ( ) % / ... which is then used in the
motor (U, power) ; . < eas
motor (3, power) ; function definition.

wait for milliseconds (milliseconds) ;
ao();

Professional Development Workshop E h ll‘”
Page :130 © 1993 - 2017 KIPR Dt a.



Repetition, Repetition, Repetition

Program flow control with loops
while loops for counting
while and Boolean operators

Professional Development Workshop E h ll‘”
Page :131 © 1993 - 2017 KIPR Dt a



Suppose your task is to wave the robot arm 10 times...

Wave Arm.
N/
Pseudocode Comments Wave Arm,
Wave Arm. // 1. Wave Arm. w::m
2. Wave Arm. // 2. Wave Arm. N/
3.  Wave Arm. // 3. Wave Arm. Wa:;m'
4. Wave Arm. // 4. Wave Arm. LT
5. Wave Arm. // 5. Wave Arm. wxm_
6. Wave Arm. // 6. Wave Arm. N2
7. Wave Arm. // 7. Wave Arm. wa:;m'
8. Wave Arm. // 8. Wave Arm. e
9. Wave Arm. // 9. Wave Arm. w:e{rm.
10. Wave Arm. // 10. Wave Arm. wxm_
11. End the program. // 11. End the program. J

Return 0.

<

Professional Development Workshop B h ll“’
Page :132 © 1993 - 2017 KIPR a



Program flow control with loops

Now, suppose your objective is to wave the arm 50 times...
... or 100 times...
... or 1,000 times...
... or 12,345 times...
You could copy-and-paste lines of code, but it would take a very long time...
There has got to be a better way!

(And there is!)

Professional Development Workshop E h ll“’
Page :133 © 1993 - 2017 KIPR Dt a.



/By Program flow control with loops
1

®* What if we want to repeat the same block of code many times?

®* We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Professional Development Workshop B h ll“’
Page :134 © 1993 - 2017 KIPR Dt a



/By Program flow control with loops
b

C ;

Q
<:: <
()
=

s
>
3

Q
<
()
C"

Is
“counter”

s
>
3

Q
<:: <
()
=

=
>
3

Q
<
o
Cﬂ

s
>
3

Q
<:: <
(]
=

=
>
3

Q
<
o
Cﬂ

s
>
3

Q
<
(]
<-|

s
>
3

o o
<

3 3
5 =1

4

X
]
b3
c
o

Professional Development Workshop
Page :135 © 1993 - 2017 KIPR




Page

:136

Wave Arm.

5
SHe
>
3

s
>
3

Q
<
()
C"

s
>
3

Q
<:: <
()
=

=
>
3

Q
<
o
Cﬂ

s
>
3

Q
<:: <
(]
=

=
>
3

Q
<
o
Cﬂ

s
>
3

Q
<
(]
<-|

s
>
3

Q
<
o
C-l

s
>
3

[ )
0 <
c o
<
3 =

o
b3
o

This part of the code
is the loop.

Professional Development Workshop
© 1993 - 2017 KIPR

N/

Set “counter” to 0.

“counter”




while loops

The while loop checks to see if a Boolean test is true or false...
* If the testis true, then the while loop continues to execute the block of code that immediately

follows it.
* |If the test is false, then the while loop finishes, and the line of code after the block of code is

executed.

int main ()

{
// Code before loop ...

while (Boolean test) // Loop

{
// Code to repeat ...

}

// Code after loop ...
return 0;

Professional Development Workshop E h ll‘”
Page :137 © 1993 - 2017 KIPR Dt a.



while loops

The while loop checks to see if a Boolean test is true or false...
* If the testis true, then the while loop continues to execute the block of code that immediately

follows it.
* |If the test is false, then the while loop finishes, and the line of code after the block of code is

executed.

int main ()

{
// Code before loop

while (Boolean test) b Block Header
Begin ey { (no semicolon!)
// Code to repeat ...
End =———p}

// Code after loop
return 0;

Professional Development Workshop E h ll‘”
Page :138 © 1993 - 2017 KIPR Dt a.



while and Boolean operators

The Boolean test in a while loop is asking a question:

Is this statement true or false?

®* The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:

* == Equal to (NOTE: two equal signs, not one which is an assignment!)
* I= Not equal to

* < Less than

* > Greater than

* L= Less than or equal to

* >= Greater than or equal to

Professional Development Workshop B h ll“’
Page :139 © 1993 - 2017 KIPR Dt a



Page

Boolean English Question True Example False Example
A == Is A equal to B? 5 == 5 ==
A '=B Is A not equal to B? 5 =4 5 =5
A< B Is A less than B? 4 < 5 5 < 4
A > B Is A greater than B? 5 > 4 4 > 5
4 <=5
A <= B Is A less than or equal to B? 6 <= 5
5 <=5
5 >= 4
A > B Is A greater than or equal to B? E o> © 5 >= 6

: 140

Professional Development Workshop

© 1993 - 2017 KIPR

Botball




Description: Write a program for the KIPR Wallaby that drives the

DemoBot along a path in the shape of a square using loops.
® Hint: modify your old square-drawing program to use a while loop.

®* Bonus: use a while loop and functions!

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Set Variable “side_counter” to O. // 1. Set Variable “side counter” to 0.
2. Loop: Is ”side_counter" <4? // 2. Loop: Is “side counter” < 47?
1. Drive forward. //  2.1. Drive forward.
2. Turn right 90°. // 2.2. Turn right 90-degrees.
3. Add1to “side_counter”. //  2.3. Add 1 to “side_counter”.
3. Stop motors. // 3. Stop motors.
4. End the program. // 4. End the program.
. o
rotesons peviapment orino Botball



Analysis: Flowchart

\/

Set “side_counter” to 0.

Boolean Test

NO ‘ YES

Drive forward.

v/

Turn right 90°.

N/

Add 1 to “side_counter”.

\L # Stop motors.

Return 0.

Boolean Test
“side_counter” is < 4?

{

Professional Development Workshop E h ll“’
Page :142 © 1993 - 2017 KIPR Dt a.



Solution:

Source Code

Comments

int main ()

{
// 1. Set “side counter” to 4.
// 2. Loop: Is “side counter” < 47
// 2.1. Drive forward.
// 2.2. Turn right 90-degrees.
// 2.3. Add 1 to “side counter”.
// 3. Stop motors.
// 4. End the program.

}

Page :143

Professional Development Workshop

int main ()

{

int side_counter =

; // declare and

//initialize wvariable all in one line

while (side_counter < 1)

{

motor (0, )
motor (2, )
wait for milliseconds ( ); // forward
motor (0, )
motor (2, )

wait for milliseconds ( ); //right turn

side_counter = side counter + 1;

ao()

return 0;

© 1993 - 2017 KIPR

Botball




Solution: Use a function!

./
g /
o/
/
g
S/
S
Comments !
int main ()
{
// 1. Set “side counter” to 4.
// 2. Loop: Is “side counter” < 47
// 2.1. Drive forward.
// 2.2. Turn right 90-degrees.
// 2.3. Add 1 to “side counter”.
// 3. Stop motors.
// 4. End the program.
}
\
\
\
\
\
\
\
\
\
Page :144

void drive forward and turn right();

int main()

{

int side_counter = ;

// loop exits when side counter =
while (side_counter < 1)

{

drive forward and turn right();

side counter =

}

ao();
return 0;

void drive forward and turn right()

{

motor (0, )/

motor (3, );

wait for milliseconds ( ) ;
motor (0, )/

motor (3, )/

wait for milliseconds ( ) ;
ao();

side counter + 1;

4




Description: Write a program for the KIPR Wallaby that moves the DemoBot

servo arm from position 200 to 1800 in increments of 100.
®* Remember to enable the servos at the beginning of your program, and disable the

servos at the end of your program!

Analysis: What is the program supposed to do?

Pseudocode

1. Set counter to 200. //

2. Set servo position to counter. //

3. Enable servos.

4. Loop: Is counter < 18007? //
1. Wait for 100 milliseconds. //
2. Add 100 to counter. //
3. Set servo position to counter. //

5. Disable servos. //

6. Endthe program. //

Page :145 © 1993 - 2017 KIPR

Comments

. Set counter to 200

. Set servo position to counter

// 3. Enable servos.

. Loop: Is counter < 18007

4.1. Wait for 100 milliseconds.
4.2. Add 100 to servo position.

4.3 Set servo position to counter.

. Disable servos.

. End the program.

Professional Development Workshop BDthalr



Analysis: Flowchart

Set counter to 200.

A4

Set servo position to counter.

\Z

. 2

Enable servos.

Is counter <
1800
NO N/ YES

Wait for 100 milliseconds.

N/
Add 100 to counter.
A4 _y

Set servo position to counter.

k;>[ Disa$ ;rvos.

Return 0.

& Bothall




Solution:

Comments

Source Code

int main()

{

// 1. Set counter to 200.
// 2. Set servo position to counter.
// 3. Enable servos.
// 4. Loop: Is counter < 18007
// 4.1. Wait for 0.1 seconds.
// 4.2. Add 100 to counter.
// 4.3. Set servo position to counter.
// 5. Disable servos.
// 6. End the program.
}
Page :147

int main()

{

int counter = ;

set_servo_position((U, counter);

enable servos();

// Is counter < 18007
while (counter < )

{

}

wait for milliseconds ( ) ;

// Add 100 to counter
counter = counter + ;

// Set servo position to counter
set servo position (0, counter);

// Disable servos.
disable servos();

return 0O;




Making Smarter Robots with Sensors

Analog and digital sensors
Light and touch sensors
wait for light() andwait for touch () functions

Professional Development Workshop E h ll‘”
Page :148 © 1993 - 2017 KIPR Dt a



®* You might have realized how difficult it is to be
consistent with just “driving blind”.

®* By adding sensors to our robots, we can allow them to
detect things in their environment and make decisions
about them!

® Robot sensors are like human senses!
®* What senses does a human have?
®* \What sensors should a robot have?

Professional Development Workshop B h lr’
Page :149 © 1993 - 2017 KIPR Dt a



Analog Sensors Digital Sensors

® Range of values: ® Range of values:

0 —4095 0 (not pressed) or 1 (pressed)
® Ports:0-5 ® Ports:0-9
® Function: analog(port #) ® Function: digital (port #)

® Small reflectance

* Sensors: !? ® Sensors:
* Light ® Large touch *
,_.“' ® Small touch ‘

S s - ég

Professional Development Workshop E h ll“’
Page :150 © 1993 - 2017 KIPR Dt a.

® Large reflectance ® Lever touch

®* Slide sensor




Page

‘,
!
%
!
b

:151

8 " & o P
| A 1 TR
i 3 VR 4o o
s R ™ Nt & o B ¢ o
¥ hi ' '
e 5.2 N LS. d p
] ) . 4
] i '
P B v A
i R J
f | n
! [ o s :
& , a 7
4 i e i ) PR L P
7 T U
@ / 3 s d 3
ke, | —
AT PN L e S e S S O BN -

I N——.
Z A o S
== Sensor Plug

Orientation

g

Digital Sensor Analog Sensor
Ports#0-9 Ports # 0-5

Professional Development Workshop BDthalr

© 1993 - 2017 KIPR



Built-In Digital Sensor: Buttons

 The Wallaby has built-in buttons on the right side (opposite
the power switch)

* right button()

* left button()

® returns a value of 1 if the button is being pressed

® returns a value of O if the button is not being pressed at that time

Professional Development Workshop B h ll“’
Page :152 © 1993 - 2017 KIPR Dt a



Page

int main ()

{

// Has R button been touched?
while (right_button() != 1)

{
printf (”“Press the R Button!\n");

}

printf ("Ahh! Something touched my Button!'\n");
return 0;

R button

Professional Development Workshop

1153 © 1993 - 2017 KIPR

Botball



Sensor waiting functions

wait for light(2);
// Waits for the light on port #3 before going to the next line.

wait for touch(?);
// Waits for the touch on port #8 before going to the next line.

Professional Development Workshop E h ll‘”
Page :154 © 1993 - 2017 KIPR Dt a.



Usingwait for light

What is this?

int main ()

{
wait for light(0);
printf ("I see the light!\n");
return 0;

}

Professional Development Workshop E h ll“’
Page :155 © 1993 - 2017 KIPR Dt a.



Page

Starting your programs with a light

The light sensor is used to start Botball robots at the beginning of
the game, and it is a cool way to automatically start your robot.

The wait for light() function allows your program to run
when your robot senses a light.

®* Note: It has a built-in calibration routine that will come up on the screen
(a step-by-step guide for this calibration routine is on a following slide).

The light sensor senses infrared light, so light must be emitted
from an incandescent light, not an LED light. <

® For our activities, you can use a flashlight.
The more light (infrared) detected, the lower the reported value.

Professional Development Workshop B h lr’
:156 © 1993 - 2017 KIPR Dt a



Plug in your light sensor
(and get your flashlight!)

Sensor Plug
Orientation

Digital Sensor / Analog Sensor
————————— Ports#0-9 / Ports # 0-5

['4

| Plug your Light |

I Sensor into Analog = == == == == = v
| Port #0. I

Professional Development Workshop
Page :157 © 1993 - 2017 KIPR




Use the sensor list

Page

:158

Analog Sensor 3 1164
Analog Sensor 4 609
Analog Sensor 5 927
Digital Sensor0 0

Digital Sensor1 0

B 86%

L& Motors and Sensors
[ - Programs A ‘
. ) Motors J L o Sensor Graph j
= . & < 2 PR
L o Motors and Sensors J
z > L Servos = Sensor List .]
[¢ a2 Settings J
i 87% [hss%
v x
lL Home ]L Back :I | |
Analog Sensor 0 52 ‘a’l
Analog Sensor 1 1130 (=)
Analog Sensor2 1156 I

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



About J( ShutDown ] . |
[ - Programs ] N 3
[o : R J [ & Motors V)r- Sensor Grap}l e J
[° 2 Settings J [ Servos ] [ = Sensor List
-
Bl 57% 86%
I[ Home JL BackJ el
|_\Ana|og 0 v J[Analog 0 v J @
2282 2283

Professional Development Workshop BDthalr

Page :159 © 1993 - 2017 KIPR



Starting with a light

Description: Write a program for the KIPR Wallaby that waits for a
light to come on, drives the DemoBot forward for 3 seconds, and

then stops. Flowchart
Analysis: What is the program supposed to do? —
* ) Wait for light.

VA

Pseudocode Comments St

1. Wait for light // 1. Wait for light V2

' | ' gne- [ Wait for 3 seconds. ]

2. Drive forward. // 2. Drive forward. V

3. Wait for 3 seconds. // 3. Wait for 3 seconds. [Stop motors. ]

4. Stop motors. // 4. Stop motors.

5. Endthe program. // 5. End the program.

Professional Development Workshop B h ll“’
Page :160 © 1993 - 2017 KIPR Dt a



When you use the wait for 1light() function in your program,
the following calibration routine will run automatically.

CALIBRATE: sensor port #1 CALIBRATE: sensor port #1 § CALIBRATE: sensor port #1
press ON when light is on ‘ press OFF when light is off press OFF when light is off
light on value is = 66 light on value is = 66 light on value is = 68

light off value is = 1009 | light off value is = 1009

Good callhraflonl

i @

Diff = 94:#’(AITINL: FOR LIGHTS ON

Current re ng: 1009
| (; Lightison ] | oo [ ! j]\‘ught is OFF ] i:*
A [#h100% \
' \
| \
______ 1_ S W

I When the light is on (low value) I I’When the light is off (high vaIue), /

I pressthe “Lightis On” button. | | press the “Light is Off” button. 1 ! You will get a “Good Calibration!
———————————————————————————— I message and moving red dot on

' green bar when done correctly.
You will get a “BAD CALIBRATION”
| message when not done correctly, |

14

-—ee o = -

Note: For Botball, wait for 1light () should be

one of the first functions called in your program. I and you will need to run through |
| the routine again. |
\ ]

Professional Development Workshop B h ll“’
Page :161 © 1993 - 2017 KIPR Dt a



Solution:

Comments

Source Code

{

//
//
//
//
//

o WDNhPR

int main ()

. Wait for light.
. Drive forward.
. Wait for 3 seconds.
. Stop motors.

. End the program.

int main ()

{
wait for light(0);

motor (0, ); //forward
motor (=, )

wait for milliseconds (
ao();

return ;

) ;

Execution: Compile and run your program on the KIPR Wallaby.

Page

:162

Professional Development Workshop
© 1993 - 2017 KIPR

Botball




Comments

Source Code

{
//
//
//
//
//

o WDNhPR

int main()

. Wait for light.
. Drive forward.
. Wait for 3 seconds.
. Stop motors.

. End the program.

void drive_forward();
int main ()

{
wait for light(0);

drive_forward();
wait for milliseconds ( ),

ao() ;

return ;

}

void drive forward()

{
motor (0, ) ;
motor (3, ) ;

}

Execution: Compile and run your program on the KIPR Wallaby.

Page :163

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Detecting touch

wait for touch ( ) ;

®* Thewait for touch () function pauses your program until a dlgltal sensor
on the specified port # reads a value of 1 (pressed or touched).

®* Note: Unlike wait for light(), it does not have a built-in calibration
routine because it is not necessary—touched is touched!

®* There are many digital sensors in your kit that can detect touch...

8 & &

Large touch Small touch Lever touch

Select the one that can be easily attached and can easily detect the objects.

Professional Development Workshop B h lr’
Page :164 © 1993 - 2017 KIPR Dt a



Usingwait for touch

What is this?

int main()

{
wait for touch(?);
printf ("I’'m touched!\n");
return 0O;

}

Professional Development Workshop E h ll“’
Page :165 © 1993 - 2017 KIPR Dt a.



Drive until touched

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward until it detects a touch, then stops.

® Use a lever touch sensor.
® Plug the lever touch sensor into any of the digital sensor ports (#0—9).

® You can either attach the sensor to your robot, or hold it in your hand and
manually press it whenever you would like the robot to stop.

y
- ag

Qe Qe @

Professional Development Workshop E h ll“’
Page :166 © 1993 - 2017 KIPR Dt a.




Drive until touched

Description: Write a program for the KIPR Wallaby that drives the

DemoBot forward until it detects a touch, then stops.

Analysis: What is the program supposed to do? Flowchart

Pseudocode Comments N

1.

2.
3.
4

Page

[ Drive forward. ]

Drive forward. // 1. Drive forward.
Wait for touch. // 2. Wait for touch. [
Waltfortouch ]
Stop motors. // 3. Stop motors.
End the program. // 4. End the program. Stop motors.

Qe — Qe Q@ ﬁ

Professional Development Workshop B h ll“’
1167 © 1993 - 2017 KIPR Dt a



Drive until touched

Solution:
Source Code
’,/' int main|()
Comments Pt {
. _ motor (0, ) ;
?nt main () motor (2, ) ;
// 1. Drive forward.
// 2. Wait for touch. wait for touch (%) ;
// 3. Stop motors.
// 4. End the program.
} ao();
TSsl return 0O;

Execution: Compile and run your program on the KIPR Wallaby.

Professional Development Workshop E h ll‘”
Page :168 © 1993 - 2017 KIPR Dt a




Drive until touched

Source Code

| void drive_forward();

7 int main ()
/ {
/ dri £ d()
y; rlve_ orwar ;
Comments / wait for touch(9);
int main ()
{ ao();
// 1. Drive forward.
// 2. Wait for touch. N .
// 3. Stop motors. return U,
// 4. End the program. }
}
. void drive forward()
* {
AN motor (0, ) ;
\
. motor (2, ) ;
AN,
\

Execution: Compile and run your program on the KIPR Wallaby.

Professional Development Workshop

®
Page :169 © 1993 - 2017 KIPR EDthall



Drive until touched

Reflection: What did you notice after you ran the program?

®* What happens if the robot goes too fast?
®* Howdoeswait for touch () work?
®* How can | write my own version of something like it?

®* To do this, we go back to our concept of using a loop (see next section).

Professional Development Workshop E h ll“’
Page :170 © 1993 - 2017 KIPR Dt a.



More Repetition, Repetition, Repetition

Program flow control with sensor driven loops
while and Boolean operators

Professional Development Workshop E h ll‘”
Page :171 © 1993 - 2017 KIPR Dt a



Remember loops?

®* How doesthewait for light () function work?

®* We can use a loop, which controls the flow of the program by
repeating a block of code until a sensor reaches a particular value.
®* The number of repetitions is unknown
®* The number of repetitions depends on the conditions sensed by the robot

Professional Development Workshop B h lr’
Page :172 © 1993 - 2017 KIPR Dt a



Using while loops

What is this?

~

int main () ‘{////,
{
while (digital(s) == 0) «<—— What does this say?
{
motor (0, )
motor (3, )
}
ao();
return
}

Professional Development Workshop E h ll‘”
Page :173 © 1993 - 2017 KIPR Dt a.



Using while loops

While the touch sensor [ i, + main()
is not pressed (== 0), N { .
hile (digital(?) == () €— ?
move forward. uhile (digital(?) ) What does this say:
motor (0, )
motor (2, )
}
ao();
return 0O;
}

Professional Development Workshop E h ll‘”
Page :174 © 1993 - 2017 KIPR Dt a.



while and Boolean operators examples

while (digital( == 0)
{
// Code to repeat ...

while (digital( == 0)
{
// Code to repeat ...

while (analog(®) < )

{
// Code to repeat ...

while (countdown >= 1)

{
// Code to repeat ...

}

Professional Development Workshop E h ll‘”
Page :175 © 1993 - 2017 KIPR Dt a.



Description: Write a program for the KIPR Wallaby that drives the

DemoBot forward until a touch sensor is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode

1.

2.
3.
4

Page

Drive forward.

Loop: Is not touched?
Stop motors.

End the program.

:176

Comments

// 1. Drive forward.

// 2. Loop: Is not touched?
// 3. Stop motors.

// 4. End the program.

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Is not
touched?
NO
‘ YES

Drive forward.

\L H Stop motors.

\

Return 0.

T

Professional Development Workshop E h ll‘”
Page :177 © 1993 - 2017 KIPR Dt a.



Solution:

Comments

int main()

{
// 1. Loop: Is not touched?
// 1.1. Drive forward.
// 2. Stop motors.
// 3. End the program.

}

int main ()

{

while (digital (2)

{

motor (O,
motor (3,

}
ao();

return

}

Professional Development Workshop

Page :178

© 1993 - 2017 KIPR

Source Code

Botball



Making a Choice

Program flow control with conditionals
if-else conditionals
if-else and Boolean operators
Using whileand if-else

Professional Development Workshop E h ll‘”
Page :179 © 1993 - 2017 KIPR Dt a



=
‘\“\\I%"’ ' Program flow control with conditionals
L

®* What if we want to execute a block of code only if certain
conditions are met?

®* We can do this using a conditional, which controls the flow of the
program by executing one block of code if its conditions are met
or a different block of code if its conditions are not met.
® This is similar to the loop, but differs in that it only executes once.

Professional Development Workshop B h lr’
Page :180 © 1993 - 2017 KIPR Dt a



o
\*\ " Program flow control with conditionals
it

Is it
YES ' touched? NO

[ Print “Touched!” Print “Not touched!” ]

@

Code after conditional.

-

Professional Development Workshop E h ll“’
Page :181 © 1993 - 2017 KIPR Dt a.




This part of the code
is the conditional.

Is it
touched?

[ Code after conditional. ]

o

Professional Development Workshop E h ll“’
Page :182 © 1993 - 2017 KIPR Dt a.




Program flow control with conditionals

Pseudocode Comments
1. |If:Is touched? // 1. If: Is touched?
1. Print “Touched!”. // 1.1. Print “Touched!”.
2. Else. // 2. Else.
1. Print “Not touched!”. // 2.1. Print “Not touched!”.
3. Endthe program. // 3. End the program.

In the C programming language, :
| we accomplish this with an if-else conditional. |

Professional Development Workshop E h ll“’
Page :183 © 1993 - 2017 KIPR Dt a.



if-else conditionals

The if-else conditional checks to see if a Boolean test is true or false...

* If the testis true, then the if conditional executes the block of code that immediately follows it.

If the test is false, then the if conditional does not execute the block of code, and the else block of
code is executed instead.

int main ()

{

if (Boolean test)

{

// Code to execute ...

}

else

{

// Code to execute ...

}

return ;

Professional Development Workshop

®
Page :184 © 1993 - 2017 KIPR EDthall



Using 1 £-else conditionals

What is this?
?nt main () ‘{////,

if (digital(s) == 1) <——— \What does this say?
{
printf (“Touched!\n") ;

}

else

{
printf (“Not touched!\n");

}

return ;

}

Professional Development Workshop E h ll‘”
Page :185 © 1993 - 2017 KIPR Dt a.



Using 1 £-else conditionals

int main ()

{
if (digital(s) == 1)

{
printf (“Touched! \n"‘);\
}

else € Notice: no semicolon!
t (Why not?)

printf (“Not touched!\n");
}

return ;

Professional Development Workshop

®
Page :186 © 1993 - 2017 KIPR EDthall



if-else conditionals

int main ()

{

// Code before conditional

if (Boolean test)

{

The else is below // Code to execute if test is true
the } brace of the == } I
if block of code! “else

{

// Code to execute if test is false

return ;

Professional Development Workshop
Page :187 © 1993 - 2017 KIPR

Botball



if-else examples

if (right button() == 0)
{

// Code to execute
}
else
{

// Code to execute
}
if (analog(?) < )
{

// Code to execute
}
else
{

// Code to execute
}

Professional Development Workshop

®
Page :188 © 1993 - 2017 KIPR EDthall



Example using while and if-else

int main ()

{
while (right button() == What do these

{ lines of code say?
if (analog(?) > ) €— Ines of code say:
{ Note the ==

- " ’ 3 1 my . .
} printf ("It’s dark in here!\n"); (2 equal S|gns)
else
{
printf ("I see the light!\n");
}

} // loop ends when button is pressed
return 0O;

}

Professional Development Workshop E h ll‘”
Page :189 © 1993 - 2017 KIPR Dt a.



Using while and if-else

int main ()

{

A while (right button() == 0)

{

A if (analog () > )
Notice how the { and } $ printf ("It’s dark in here!\n");
braces line up for each }

block of code! else
$ printf ("I see the light!\n");
v }
} // loop ends when button is pressed

¥ return 0O;

}

Professional Development Workshop E h ll‘”
Page :190 © 1993 - 2017 KIPR Dt a



Reflectance sensor for line-following

For this activity, you will need a reflectance sensor.

This sensor is excellent for line-following!

Page

This sensor is really a short-range reflectance sensor.
There is both an infrared (IR) emitter and an IR detector inside of this sensor.
IR emitter sends out IR light = IR detector measures how much reflects back.

The amount of IR reflected back depends on many factors, including surface
texture, color, and distance to surface.

Black materials typically absorb most IR - they reflect little IR backI
White materials typically absorb little IR - they reflect most IR back!

If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black line from a white surface.

Professional Development Workshop B h lr’
:191 © 1993 - 2017 KIPR Dt a



Attach your reflectance sensor

® Attach the sensor on the front of your robot so that it is pointing
down at the ground and is approximately 1/8” from the surface.

* Areflectance sensor is an analog sensor, so plug it into any of
analog sensor port #0 — 5. Port O for this example.
® Recall that analog sensor values range from 0 to 4095.

Sensor Plug
Orientation

I Analog Sensor '
Ports#0-5 |

Professional Development Workshop E h lr
Page :192 © 1993 - 2017 KIPR Dt a




Reading sensor values

from the Sensor List screen

® View sensor values from the Sensor List on your KIPR Wallaby.
® This is very helpful to view readings from all of the sensors you are using.

® You can view the values, then use them in your code.

- \nalog Sensor 1
] ansur Graph
= nalog Sensor 2

arisi _nalog Sensor 3

ens
71
il [ Camera

[t
(=
J

o . A

| |
i | Sensor Ports t Sensor Values

Professional Development Workshop B h lr’
Page :193 © 1993 - 2017 KIPR Dt a



Reading sensor values

from the Sensor List screen

® Over a black surface, the sensor reading is 3863. ' Yourvalueswillbe |

: . . : different, but the process !
® Over a white surface, the sensor reading is 156. | will be the same! |

[(—
‘ - é Analog Sensor 0
Analog Sensor U BBB :

[|Analog Sensor 1
Analog Sensor1 99 [

Analog Sensor 2

Analog Sensor 2 1011
. , nalog Sensor 3

Analog Sensor 4

‘Sensor 5

\
Value of 156 |
(Whlte Surface) 1

.
I
|

Professional Development Workshop B th lr
Page :194 © 1993 - 2017 KIPR D a



By Activity 3 (connections to the game)
W

Starting with your DemoBot on one end of “JBC Mat 2” or
using a piece of dark tape, have the robot travel along the

path of the tape using the Top Hat sensor to determine the
robot path (line following).

Professional Development Workshop B h lr’
Page :195 © 1993 - 2017 KIPR Dt a



Activity 3 Video (possible solution)

rofessional Development Workshop
© 1993 - 2017 KIPR



Page

:197

Line-following

Is not
pressed?

Turn/arc left. Turn/arc right.

SHE )

\ ﬁ Stop motors.

\

Return 0.

o

Professional Development Workshop E h ll“’
© 1993 - 2017 KIPR Dt a



Pseudocode (Comments)

{

//
//
//
//
//
//
//

int main ()

1. Loop: Is not pressed?
1.1. If: Is dark detected?
1.1.1. Turn/arc left.
1.2. Else:

1.2.1. Turn/arc right.

2. Stop motors.
3. End the program.

Page

:198

void turn_left();
void turn_right();

int main()
{ while (right_button() == 0)
{ if (analog(0) > )
{ turn_left();
}

else

{
turn_right()

}
}

ao();

return 0O;

}

void turn_ left()
{

motor (0, )

motor (3, ); // Turn/arc left.
}

void turn_right()
{
motor (0, )
motor (=, ),

}

// Turn/arc right.




Page

:199

Homework

Game review
Game strategy
Workshop survey

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Homework for tonight:

same review

Visit http://homebase.kipr.org

Review the game rules on your Team Home Base.
®* We will have a 30-minute Q&A session tomorrow.

* After the workshop, ask questions about game rules in
the Game Rules Forum.
® You should regularly visit this forum.
®* You will find answers to the game questions there.

Professional Development Workshop B h lr’
Page :200 © 1993 - 2017 KIPR Dt a


http://homebase.kipr.org/

Homework for tonight:

game stratesg

®* Break down the game into subtasks!

* Write pseudocode and/or create flowcharts!

® Start with easy points—score early and score often!
®* Keep it simple and make sure it works.

® Discuss your strategy with your instructor tomorrow.

Professional Development Workshop B h lr’
Page :201 © 1993 - 2017 KIPR Dt a



Homework for tonight:

ame strate

ASK . Think about the

What is the challenge? ' Engineering Design Process!
L
Are there requirements or

limitations?

What do we know already?

IMPROVE

Study test results. Modify
design to make it better. Test
it out again.

CREATE

Build solution based on
plan. TEST it out.

IMAGINE

Brainstorm possible solutions
Consider design options

PLAN

Choose the best
design. Draw a picture.

= K20CENTER



Homework for tonight:

workshop surve

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop E h ll“’
Page :203 © 1993 - 2017 KIPR Dt a.


https://www.surveymonkey.com/r/LCYB7RY

Welcome to the Botball Team Home Base

2017 Team Home Base

The Team Home Base is your resource for:

e Botball online project documentation
e Botball game FAQs
e Other Botball game related resources

Professional Development Workshop E h ll‘”
Page :204 © 1993 - 2017 KIPR Dt a.



http://homebase.kipr.org/

Welcome back!

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

Botball 2017

Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)
with significant contributions from KIPR staff
and the Botball Instructors Summit participants

v2017.01.06-2

Professional Development Workshop E h ll“’
Page :205 © 1993 - 2017 KIPR Dt a


https://www.surveymonkey.com/r/LCYB7RY

Day 1 Day 2

* Botball Game Review

®* Motor Position Counter

®* Measuring Distance

®* Color Camera

®* Moving the iRobot Create: Part 1
®* Moving the iRobot Create: Part 2
* iRobot Create Sensors

® Logical Operators

* Resources and Support

Professional Development Workshop B h ll“’
Page :206 © 1993 - 2017 KIPR Dt a



Botball Game Review

Game Q&A
Construction, documentation, and changes
Tournament template
shut down_in () function

Professional Development Workshop E h ll‘”
Page :207 © 1993 - 2017 KIPR Dt a



You have 30 minutes...

Professional Development Workshop E th lr
Page :208 © 1993 - 2017 KIPR D a



ge
p -
O
O
o
)
&
(4%
oT0)
0
L
afd
O
(aa)]

3

®
© 1993 - 2017 KIPR EDthall

Professional Development Workshop

: 209

Page



Ideas on construction

Note: our competition tables are built
to specifications with allowable variance.

®* Do NOT engineer robots that are so precise that a 1/4” difference
in @ measurement means they are not successful.

®* For example: the specified height of the elevated platform is 15-3/4”, but at
the tournament the platform could actually measure 15-7/8”. If your arm is
set for exactly 15-3/4”, it would not work.

® Review construction documents (like the ones on the Home
Base!) to get building ideas.

® Search the internet for robots and structures to get building ideas.
® Test structure robustness before the tournament!

Professional Development Workshop B h lr’
Page :210 © 1993 - 2017 KIPR Dt a



Documentation

® Botball Online Project Documentation (BOPD)
® Rubrics and examples are on the Team Home Base
® NO NAMES OR SCHOOL NAMES ALLOWED ON SUBMISSIONS

When?

®* 3 document submissions during design and build portion
® 1 onsite presentation (8 minute) at regional tournament

Why?
®* To reinforce the Engineering Design Process
® Points earned in Documentation factor into the overall tournament scores!

See BOPD Handbook on the Team Home Base
for more information (rubrics and exemplars).

Professional Development Workshop B h lr’
Page :211 © 1993 - 2017 KIPR Dt a



Changes this season

®* See the Team Homebase for a document covering all changes made in regards
to Hardware, Rules, the Wallaby, Software, and Documentation.

Professional Development Workshop E h ll“’
Page :212 © 1993 - 2017 KIPR Dt a.



Tournament templates

int main() // for your Create robot
{
create_connect() ;
wait for light(0); // change the port number to match the port you use
shut down in( ); // shut off the motors and stop the robot after 119 seconds
// Your code
create_disconnect();
return 0O;

int main() // for not your Create robot
{
wait for light(0); // change the port number to match the port you use
shut down in( ); // shut off the motors and stop the robot after 119 seconds
// Your code
return 0O;

Professional Development Workshop E h ll‘”
Page :213 © 1993 - 2017 KIPR Dt a



Botball tournament functions

These two functions should be
two of the first lines of code in
your Botball tournament program!

wait for light(0);

// Waits for the light on port #0 before going to the next line.

shut _down_in( ) ;

//

Shuts down all motors after 119 seconds (just less than 2 minutes)
[ J

This function call should come immediately after the wait for light() in your code

If you do not have this function in your code, your robot will not automatically turn off
its motors at the end of the Botball round and you will be disqualified!

Professional Development Workshop
Page :214

®
© 1993 - 2017 KIPR EDthall



Description: Write a program for the KIPR Wallaby that waits for a

light to come on, shuts down the program in 5 seconds, drives the
DemoBot forward until it detects a touch, and then stops.

Analysis: What is the program supposed to do?

Pseudocode

1. Wait for light.

2. Shutdownin 5 seconds.
3. Drive forward.

4. Wait for touch.

5. Stop motors.

6. Endthe program.

Page

1215

Comments

// 1. Wait for light.

// 2. Shut down in 5 seconds.
// 3. Drive forward.

// 4. Wait for touch.

// 5. Stop motors.

// 6. End the program.

Professional Development Workshop
© 1993 - 2017 KIPR



e
" Running a Botball tournament program
it

Analysis:

Page :216

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Solution:

Pseudocode (Comments)

Source Code

{
//
//
//
//
//
//

o OndWDN K

int main ()

. Wait for light.
. Shut down in 5 seconds.
. Drive forward.

. Wait for touch.
. Stop motors.

. End the program.

int main()

{
wait for light(0);
shut down in(°5);
motor (0, ) ;
motor (3, ) ;
wait for touch(?);

ao();

return ;

}

Execution: Compile and run your program on the KIPR Wallaby.

Page :217

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



When you use the wait for 1light() function in your program,
the following calibration routine will run automatically.

CALIBRATE: sensor port #1
press ON when light is on

light on value 1s =

66

CALIBRATE: sensor port #1
press OFF when light is off
light on value is = 66
light off value is = 1008

I When the light is on (low value) I
press the “Light is On” button.

Page

I’When the light is off (high vaIue),
v press the “Light is Off” button.

Note: For Botball, wait for 1light () should be
one of the first functions called in your program.

: 218

Professional Development Workshop
© 1993 - 2017 KIPR

CALIBRATE: sensor port #1
press OFF when light is off
light on value is = 66
light off value is = 1009

Good callhraflonl

i @

piff = 94:MAITINL, FOR LIGHTS ON
Current reZ®1nhg: 1009

¥ ! | { Light is oFF ] ¢

You will get a “Good Calibration!” \I
message and moving red doton |
green bar when done correctly. |

You will get a “BAD CALIBRATION” :

|
|
|

— o ——

| message when not done correctly,
I and you will need to run through
| the routine again.



Reflection:

®* What happens if the touch sensor is pressed in less than 5 seconds after
starting the program?

®* What happens if the touch sensor is not pressed in less than 5 seconds after
starting the program?

®* What is the best way to guarantee that your program will start with the light in
a Botball tournament round? (Answer: wait for light())

®* What is the best way to guarantee that your program will stop within 120
seconds in a Botball tournament round? (Answer: shut down in())

Use these functions in your Botball tournament code!

Professional Development Workshop E h ll“’
Page :219 © 1993 - 2017 KIPR Dt a.



Page

:220

Motor Position Counter

Motor position counter functions
Ticks and revolutions

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Motor position counter

Each motor used by the DemoBot has a built-in motor position counter,
which you can use to calculate the distance traveled by the robot!

Motor Port #
Ak//’/// (#0-3) “*-\\\\s>
get motor position_counter () — OR — gmpc ()

// Tells us the number of ticks the motor on port #3 has rotated.
// Note: “gmpc” is shorthand for “get motor position_ counter”.

Motor Port #

(#0-3) ““---~3
clear_moto:_position_counter(‘ff/// — OR — cmpc () ;

// Resets the tick counter to 0 for the motor on port #3.
// Note: “cmpc” is shorthand for “clear motor position counter”.

Similar to how a clock is divided into

®* The motor position is measured in “ticks”. 50-second intervals (ticks). >

* Botball motors have approximately 1400 ticks per revolution.
® Use wheel circumference divided by 1400 to calculate distance!

Professional Development Workshop
Page :221 © 1993 - 2017 KIPR




Using motor position counter functions

How many revolutions
will the motor rotate?

/

int main () /
{

clear motor position_ counter (2);
while (get motor position counter () < )

{

motor (2, ),

}
ao() ;
return ;

Professional Development Workshop E h ll‘”
Page :222 © 1993 - 2017 KIPR Dt a.



Description: Write a program for the KIPR Wallaby that drives the

DemoBot forward for 10 motor revolutions, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Reset motor position counters. // 1. Reset motor position counters.
2. Loop: Is counter < 140007? // 2. Loop: Is counter < 140002
1. Drive forward. // 2.1. Drive forward.
3. Stop motors. // 3. Stop motors.
4. End the program. // 4. End the program.
Why
140007

Professional Development Workshop E h ll“’
Page :223 © 1993 - 2017 KIPR Dt a.



Solution:

Source Code

Comments
int main ()
{
// 1. Reset motor position counters.
// 2. Loop: Is counter < 140007
// 2.1. Drive forward.
// 3. Stop motors.
// 4. End the program.
}

int main ()

{
// 1. Reset motor position counters.
clear motor position_counter (0);
clear motor position_counter () ;

// 2. Loop: Is counter < 140002
if (get_motor position_counter (0) <
{
// 2.1 Drive forward.
motor (0,
motor (2,

}

);
);

ao(); // 3. Stop motors.

return 0; //4. End the program.




Reflection: What did you notice after you ran the program?

®* How far did the robot travel? Was it always the same?

®* How could you calculate an exact distance in millimeters to travel?
(Hint: Use wheel circumference divided by 1400 to calculate distance!)

®* How could you modify your program to travel a specific distance in millimeters?
(Hint: Consider writing a function with an argument for the distance.)

®* How could you modify your program to accurately turn left or right?

Professional Development Workshop B h ll“’
Page :225 © 1993 - 2017 KIPR Dt a



Drive Straight!

Description: Write a program for the KIPR Wallaby that drives the
DemoBot straight for 14000 tics by adjusting the left motor power so that
the position of the left motor is the same (or close) to the right.

Analysis: How can you adjust the left motor’s position?

Pseudocode Comments
1. Reset motor position counters. // 1. Reset motor position counts.
2. Loop: Is counter < 140007? // 2. Loop: check right position.
1. Move right motor at 75% power // 2.1 power right motor at 75%
2. s left wheel behind right? // 2.2 compare left to right counters
1.  True:speedupleft // 2.2.1 slower: power left
motor at 100%
2.  False: slow down left // 2.2.2 faster: power left
motor at 50%
3. Stop motors. // 3. Stop motors.
4. End the program. // 4. End the program.

Professional Development Workshop E h ll“’
Page :226 © 1993 - 2017 KIPR Dt a.



Drive Straight!

Solution:

Pseudocode (Comments)

Source Code

int main ()
{
// 1. clear both motor counters.
// 2. Loop: check right position
// 2.1. power right motor at 75%.

// 3. Stop motors.
// 4. End the program.

// 2.2. compare left to right counters.
// 2.2.1. slower: left motor at 100%.
// 2.1.2. faster: left motor at 50%.

int main()

{
// 1. clear both motor counters
clear motor position_counter (0); // left motor
cmpc (3); // right motor (shorter name)

// 2. Loop: check right position.
while (get motor position_counter (3) < 14000)
{

// 2.1 power right motor at 75%

motor (3, ),

// 2.2 compare left to right counters

if (gmpc(0) < gmpc(2))
{ // 2.2.1 slower: power left motor at 100%

motor (0, )

}

else

{ // 2.2.2 faster: power left motor at 50%
motor (0, ),

}
}
ao(); // 3. Stop motors.

return 0; // 4. End the program.




Drive Straight

Reflection: What did you notice after you ran the program?

®* Did the robot go straighter than in the previous program?

®* How could you use this technique whenever you wanted to drive straight?
(Hint: Consider writing a function with an argument for the distance.)

®* How could you modify your program to go straight at different speeds?

Professional Development Workshop E h ll“’
Page :228 © 1993 - 2017 KIPR Dt a.



Measuring Distance

Infrared “ET” distance sensor

Professional Development Workshop E h ll‘”
Page :229 © 1993 - 2017 KIPR Dt a



For this activity, you will need the infrared “ET” distance sensor.
®* Thereis both an infrared (IR) emitter and an IR detector inside of this sensor.

®* The sensor works by sending out an IR beam and then measures the angle the
reflected IR light returns at and triangulates the distance to an object.

This sensor makes a great medium-range distance sensor.
® Values are reliable between 5 cm and 80 cm.
® Values are not reliable beyond these distances, though they appear to be!
® Values are in raw sensor units, not in centimeters—but you can convert!

® Values decrease as an object gets farther away from the sensor.

Professional Development Workshop B h lr’
Page :230 © 1993 - 2017 KIPR Dt a



Attach your ET distance sensor

® Attach the sensor on the front of your robot so that it is pointing
forward.

®* The ET distance sensor is an analog sensor, so plug it into any of
analog sensor port #0 — 5. For the purpose of this example, we
will use analog port 5.
® Recall that analog sensor values range from 0 to 4095.

‘"1 SensorPlug |
s
Orientation Ju

P S £ A i S A S R T RS RV R . o ' .M-“M“
I Analog Sensor :/ : Analog Sensor :
| Ports#0-5 | | Ports5 |

Professional Development Workshop E h ll‘”
Page :231 © 1993 - 2017 KIPR Dt a



Reading ET distance sensor values

from the Sensor List screen

Hold an object in front of the ET distance sensor at different
distances and read the value on the Sensor List screen.

Analng Sensor 1
Analog Sensor 2

Analog Sensor 3

|Analog Sensor 4

|Analog Sensor 5

|Analog Sensor 6

Page

Analog Sensor 7

K “WWWWWWMW ----------------------------------------- @

:232

e ————————————————————
i

Back_

j

T

I

Py

Wf

m

Analog Sensor 1
Analog Sensor 2
Analog Sensor 3
33?;]Analng Sensor 4
Analog Sensor 5
i Analog Sensor 6

| Analog Sensor 7

0

Professional Development Workshop
© 1993 - 2017 KIPR




ET distance grabbing

To get sensor readings from the ET distance sensor,
you must call the analog function:

analog(5) // Get a reading from analog port #5.

® Lower values - farther distances.

® Higher values - closer distances.

® Range:5cm—380cm Y
® Values are not reliable beyond these distances, though they appear to be!

Professional Development Workshop B h lr’
Page :233 © 1993 - 2017 KIPR Dt a



Using analog for ET

What does this say?
/

int main()

{ / . .
while (analog(5) < ) Notice: no semicolon!
{ ?

motor (0, g (Why not?)
motor (3, ) ;
}
ao();
return
}
Remember

Lower values - farther distances.
Higher values - closer distances.

Professional Development Workshop B h ll“’
Page :234 © 1993 - 2017 KIPR Dt a



Maintain distance

Description: Write a program for the KIPR Wallaby that makes the
DemoBot maintain a specified distance away from an object, and stops
when the touch sensor is touched.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Loop: Is not touched? // 1. Loop: Is not touched?
1. |If:Is distance too far? // 1.1. If: Is distance too far?
1. Drive forward. // 1.1.1. Drive forward.
2. Else. // 1.2. Else.
1. |If:Is distance too close? // 1.2.1. If: Is distance too close?
1. Drive reverse. // 1.2.1.1. Drive reverse.
2. Else: // 1.2.2. Else.
1. Stop motors. // 1.2.2.1. Stop motors.
2. Stop motors. // 2. Stop motors.
3. Endthe program. // 3. End the program.

Professional Development Workshop E h ll“’
Page :235 © 1993 - 2017 KIPR Dt a.



Maintain distance

Solution:

Comments

Source Code

int main ()
{
// 1. Loop: Is not touched?

// 1.1. If: Is distance to far?

// 1.1.1. Drive forward.

// 1.2. Else.

// 1.2.1. If: Is distance too close?
// 1.2.1.1. Drive reverse.

// 1.2.2. Else.

// 1.2.2.1. Stop motors.

// 2. Stop motors.
// 3. End the program.

Page :236

int main()
{
while (digital(0) == 0)
{

// 1.1. Is distance too far?

if (analog(5) < )

{
motor (0, ) ;
motor (3, ) ;

}

else // sensor value is 475 or greater

{
// 1.2.1. If: Is distance too close?
if (analog(5) > )
{

motor (0, ),
motor (3, )

}
else // sensor value is 475-525
{
ao();

}

ao() ;
return ;




Moving the iRobot Create: Part 1

Setting up the Create
The Create and the KIPR Wallaby
Create functions

Professional Development Workshop E h ll‘”
Page :237 © 1993 - 2017 KIPR Dt a



Charging the Create

® For charging the Create, use only the power supply
which came with your Create.

®* Damage to the Create from using the wrong charger is easily
detected and will void your warranty!

®* The Create power pack is a nickel metal hydride
battery, so the rules for charging a battery for any
electronic device apply.
® Only an adult should charge the unit.
®* Do NOT leave the unit unattended while charging.
®* Charge in a cool, open area away from flammable materials.

Professional Development Workshop B h lr’
Page :238 © 1993 - 2017 KIPR Dt a



*The yellow battery tab pulls out of place on the bottom of the Create.
*The battery will be enabled as soon as the tab is removed.

Create
Underside

Professional Development Workshop B h lr
Page :239 © 1993 - 2017 KIPR Dt a



®* Remove the green protective tray from the top of the Create.
® Use only the Create charger provided with your kit.

®* The Create docks onto the charging station.

Remove this Serial
Port

Professional Development Workshop B h lr
Page :240 © 1993 - 2017 KIPR Dt a



Build the Create DemoBot

Professional Development Workshop E h ll‘”
Page :241 © 1993 - 2017 KIPR Dt a.



Page

Create connect/disconnect functions

All programs used with the Create Flowchart

MUST start with
create connect() —_— \/

and endwith [ Connect to Create ]

create disconnect () \/
- [ Drive forward 2 seconds. ]

\/

[ Turn off motors ]

\/

[ Disconnect from Create ]

Professional Development Workshop B h ll“’
: 242 © 1993 - 2017 KIPR Dt a



Create motor functions

Note: Create commands run until a different motor command is received.

create drive direct( T , T ) ;

Left Motor Speed Right Motor Speed

(in mm/second) (in mm/second)
Examples:
create drive direct ( , ) ; // Moves forward at 100 mm/sec.
create drive direct( , ); // Create will turn left.
create drive direct ( , ); // Create will turn right.

create stop(); // Turns off the Create motors.

WARNING: the maximum speed for the Create motors is 500 mm/second = 0.5 m/second.
It can jump off a table in less than one second!
Use something like 200 for the speed (moderate speed) until teams get the hang of this.

Professional Development Workshop B h ll“’
Page :243 © 1993 - 2017 KIPR Dt a



Using Create functions

int main()

{
create_connect() ;
create drive direct( ' ) ;
wait for milliseconds ( ),
create stop(); ‘K\\

. How far will the
create_disconnect() ; .
return 0; Create drive?

Professional Development Workshop E h ll“’
Page :244 © 1993 - 2017 KIPR Dt a.



Moving the Create

Description: Write a program for the KIPR Wallaby that drives the
Create forward at 100 mm/second for four seconds, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Connectto Create. // 1. Connect to Create.

2. Drive forward at 100 mm/sec. // 2. Drive forward at 100 mm/sec.
3. Wait for 4 seconds. // 3. Wait for 4 seconds.

4. Stop motors. // 4. Stop motors.

5. Disconnect from Create. // 5. Disconnect from Create.

6. Endthe program. // 6. End the program.

Professional Development Workshop E h ll“’
Page :245 © 1993 - 2017 KIPR Dt a.



Analysis:

Moving the Create

(vs)
()
(1 &
=

[ Connect to Create. ]

Drive forward at 100 mm/sec. ]

[ Wait for 4 seconds. ]

[ Stop motors. ]

[ Disconnect from Create. ]




Solution:

Comments

Source Code

{

// 1
/] 2
// 3
/] 4
// 5

int main ()

. Connect to Create.
. Drive forward at 100 mm/sec.
. Wait for 4 seconds.

. Stop motors.

. Disconnect from Create.

int main ()

{
// 1. Connect to Create.

create connect() ;

// 2. Drive forward at 100 mm/sec.
create_drive direct( , ) ;

// 3. Wait for 4 seconds.
wait for milliseconds ( ) ;

// 4. Stop motors.
create stop();

// 5. Disconnect from Create.
create_disconnect();

return ;

Execution: Compile and run your program on the KIPR Wallaby.

Page :247

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Description: Write a program for the KIPR Wallaby that drives the

Create forward until it touches an object (or gets as close as it can),
and then returns to its starting location (home).
®* Move the object to various distances.

Starting line
Object

. Starting line

iRobot —— - Object S

Create s Starting line Object
iRobot
Create iRobot < _i

Create

Professional Development Workshop B h lr’
Page :248 © 1993 - 2017 KIPR Dt a



Moving the iRobot Create: Part 2

Create distance and angle functions

Professional Development Workshop E h ll‘”
Page :249 © 1993 - 2017 KIPR Dt a



Create distance/angle functions

The Create has a built-in sensor that measures
the distance traveled (in millimeters) and \
the angle turned (in degrees). -

This is similar to the
motor position counter...

.
1
1
1
I but better!

get create distance()
// Tells us the distance the Create has traveled in mm.

set create_distance(0);
// Resets the Create distance traveled to 0 mm.

get create total angle()
// Tells us the total angle the Create has turned in degrees.
// Positive angles are to the left. Negative angles are to the right.

set create_ total angle(0);
// Resets the Create angle turned to 0 degrees.

Professional Development Workshop E h ll‘”
Page :250 © 1993 - 2017 KIPR Dt a.



Using Create distance functions

What does this say?
/

int main()
{
create_connect() ;
set create_distance (U);
while (get create distance() < )

{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

Professional Development Workshop E h ll‘”
Page :251 © 1993 - 2017 KIPR Dt a.



Page

:252

Using Create angle functions

/

What does this say?

int main()
{
create_connect() ;
set create_ total angle(0);
while (get create total angle() <
{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

)

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Using Create angle functions

Positive angles
are to the /eft
(counter-clockwise).

{

int main ()

create_connect() ;

set create_ total angle(0);
while (get create total angle() < )
{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

e

e

Page :253

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Using Create angle functions

{

int main ()

create_connect() ;
set create total angle(0); A{///
while (get create total angle() > )

{

create _drive direct( , );‘g\\\\\
} \
create_stop() ;
create_disconnect() ;
return 0O;

Negative angles
are to the right
(clockwise).

e

k Notice:

the signs changed!

Page :254

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



iRobot Create Sensors

Create sensor functions
Logical operators

Professional Development Workshop E h ll‘”
Page :255 © 1993 - 2017 KIPR Dt a



Create sensor functions

To get Create sensor values, type get create sensor(),
replacing sensor with the name of the sensor
Ilcllghtbumpl

Ircllghtbump

cwdrop

1flightbump |

| r£1ightbump

Irfcllff fcliff

rbump 1bump|

| r1lightbump 1lightbump|

| rclifsf ﬁ;wf
I rwdrop I’I : | ‘ H lwdrop I

I distance I ‘ "““Il\\\ I total_angle I

lcllffl

Professional Development Workshop E h lr
Page :256 © 1993 - 2017 KIPR Dt a



Create sensor functions

get_create_ lbump ()

get create_ rbump ()

// Tells us if the Create left/right bumper is pressed.
// Like a digital touch sensor.

get create lwdrop ()

get create_rwdrop ()

get create cwdrop()

// Tells us if the Create left/right/center wheel is dropped.
// Like a digital touch sensor.

get create lcliff()

get create 1lfcliff()

get create rcliff()

get create rfcliff()

// Tells us the Create left/left-front/right/right-front cliff sensor value.
// Like an analog reflectance sensor.

get create battery capacity()
// Tells us the Create battery level (0-100).

Professional Development Workshop E h ll‘”
Page :257 © 1993 - 2017 KIPR Dt a.



Using Create sensor functions

What does this say?

/
int main ()
{
create connect();
while TQet_preate_:bump() == 0)
{
create_drive direct( , ) ;

}
create_stop() ;
create_disconnect() ;

return ;

Professional Development Workshop E h ll‘”
Page :258 © 1993 - 2017 KIPR Dt a.



Drive until bumped

Description: Write a program for the KIPR Wallaby that drives the
Create forward until a bumper is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connectto Create. // 1. Connect to Create.
2. Loop:Is not bumped? // 2. Loop: Is not bumped?
1. Drive forward. // 2.1. Drive forward.
3. Stop motors. // 3. Stop motors.
Disconnect from Create. // 4. Disconnect from Create.
5. Endthe program. // 5. End the program.

Professional Development Workshop E h ll“’
Page :259 © 1993 - 2017 KIPR Dt a.



Drive until bumped

Analysis: Flowchart -
Begin
\/

Connect to Create.

Drive forward.

\L H Stop motors.

\

Disconnect from Create.

\/

Return 0.

e

Professional Development Workshop E h ll“’
Page :260 © 1993 - 2017 KIPR Dt a.




Solution:

Source Code

¢ | int main ()

I
,/ // 1. Connect to Create.
Comments / create connect() ;
int main () // 2. Loop: Is not bumped?
{ while (get_create_rbump() == 0)
{
// 1. Connect to Create. . /) 2.1. Drive forward.
// 2. Loop: Is not bumped. create_drive direct( , ),
// 2.1. Drive forward. } // end while
// 3. Stop motors. .
// 4. Disconnect from Create. // 3. stop motzors'
create_stop() ;
// 5. End the program.
} // 4. Disconnect from Create.
create_disconnect() ;
\
\\ // 5. End the program.
\ return 0O;
\\ } // end main
Professional Development Workshop E h ll‘”
Page :261 © 1993 - 2017 KIPR Dt a



b Activity 4 (connections to the game)
N

Make the iRobot Create move forward in a straight line
until it comes into contact with another object. Then have

it make a 902 turn and again travel in a straight line for
exactly 0.9 meters.

Professional Development Workshop B h lr’
Page :262 © 1993 - 2017 KIPR Dt a



Y\YK\E;IJJ’I/ Activity 4 Video (possible solution)

o

Professional Development Workshop B h lr’
Page :263 © 1993 - 2017 KIPR Dt a.



LUNCH

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop E h ll‘”
Page :264 © 1993 - 2017 KIPR Dt a


https://www.surveymonkey.com/r/LCYB7RY

Color Camera

Using the color camera
Setting the color tracking channels
About color tracking
Camera functions

Professional Development Workshop E h ll‘”
Page :265 © 1993 - 2017 KIPR Dt a



Color camera

For this activity, you will need the black camera.
®* The camera plugs into one of the USB (type A) ports on the back of the Wallaby.

®* Warning: Unplugging the camera while it is being accessed can freeze the
Wallaby, requiring it to be rebooted.

USB Ports

Professional Development Workshop E h ll‘”
Page :266 © 1993 - 2017 KIPR Dt a



About Shut Down

1. Select Settings
2. Select Channels

Page

: 267

Network

Camera View ‘t ] I_ﬁ,

] > ‘,_j Channels J [ & Language

- Programs
[‘ 4 Motors and Sensors 7 J
[ 8 Settings ’

o (9 calibrate J F o]y e

y

. J

= GUI ) (@ Update _—
J

,,“,‘Luu B a1 e .

LiFe [[[h100%

LiFe [Th100% X

Professional Development Workshop

© 1993 - 2017 KIPR BDthalr



3. To specify a camera configuration, press the Add button.

4. Enter a configuration name, such as find_green, then press the
Ent button.

5. Highlight the new configuration and press the Edit button.

B Testc Cr

ate New Configuration :

"a'.“u'.'.'a'.'."ﬁ'.? b
k
sz x[cv[o n i

Professional Development Workshop B h lr’
Page :268 © 1993 - 2017 KIPR Dt a



6. Press the Add button to add a channel to the configuration.
7. Select HSV Blob Tracking, then OK to make this track color.

8. Highlight the channel, then press Configure to edit settings.
e The first channel is O by default. You can have up to four: 0, 1, 2, and 3.

7 8
|

F
Create a New Channel: l “ I
Tracking

Channel Type: [HSV Blob

[ )7 0K ] f:_x Cancel J

Professional Development Workshop B h lr’
Page :269 © 1993 - 2017 KIPR Dt a



9. Place the colored object you want to track in front of the camera
and touch the object on the screen.
* A bounding box (dark blue) will appear around the selected object.

10. Press the Done button.

F/

< S <
) Visual
< ~— <

[ ~;Manual ]

Professional Development Workshop E h ll‘”
Page :270 © 1993 - 2017 KIPR Dt a.



Verify the color channel is working

1. From the Home screen, press Motors and Sensors button.
Press the Camera button.
3. Objects specified by the configuration should have a bounding box.

|, - Programs J

| o Motors and Sensors J

& .Settngs KJ

2

Professional Development Workshop E h ll‘”
Page :272 © 1993 - 2017 KIPR Dt a.



Tracking the location of an object

®* You can use the position of the object in relation to the
center x (column) of the image to tell if it is to the left or right.

®* The image is 160 columns wide, so the center column (x-value) is 80.
® An x-value of 80 is straight ahead.
®* An x-value between 0 and 79 is to the left.
®* An x-value between 81 and 159 is to the right.
® You can also use the position of the object in relation to the center y (row) of
the image to tell how far away it is. Object

(0, 0) (80, 0) (159, 0) 0,1,2,..

(largest to smallest)

Channel #\ ¢
) ;

get object center x(0,

Left Right // The x-value of the tracked object.
// Note: number between 0 and 159.
(0, 119) (80, 119) (159, 119)

Professional Development Workshop B h lr’
Page :273 © 1993 - 2017 KIPR Dt a



Camera functions

camera open() ;
// Opens the connection to the camera.

camera close() ;
// Closes the connection to the camera.

camera update() ;

// Gets a new picture (image) from the camera and performs color tracking.

get object count( )
// The number of objects being tracked on the specified color channel.

get object center x( , )

// The center x (column) coordinate value of the object # on the color channel.

get object center y( , )
// The center y (row) coordinate value of the object # on the color channel.

Professional Development Workshop E h ll‘”
Page :274 © 1993 - 2017 KIPR Dt a



Page

1275

Using camera functions

int main|()
{
camera_open() ;
while (digital( == 0)
{
camera update() ;
if (get_object_ count( == 0)
{
printf ("No objects detected.\n");
}
else
{
if (get_object center x (0, 0) < )
{
printf ("Object is on the left!\n");
}
else

{

printf ("Object is on the right!\n");

}
}
}
camera close();
return 0O;

What do these say?

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



By Activity 5 (connections to the game)
W

s;
Calibrate and program the robot and camera combination

so that it will turn on its axis in response to Botguy moving
to the left or right in front of it.

Professional Development Workshop B h ll“’
Page :276 © 1993 - 2017 KIPR Dt a



Professional Development Workshop
Page :277 © 1993 - 2017 KIPR




Logical Operators

Multiple Boolean tests
while, 1£f, and Logical operators

Professional Development Workshop E h ll‘”
Page :278 © 1993 - 2017 KIPR Dt a



Logical operators

Recall the Boolean test for while loops and if-else conditionals...

while (Boolean test) if (Boolean test)

®* The Boolean test (conditional) can contain multiple Boolean tests
combined using a “Logical operator”, such as:

* && Anrd
° || Or . We put parentheses ( and )
| around each Boolean test...

. 1 Not/----l _____ [ \

while ((Boolean test 1) && (Boolean test 2))

if ((Boolean test 1) || (!Boolean test 2))

®* The next slide provides a cheat sheet for Logical operators.

Professional Development Workshop B h ll“’
Page :279 © 1993 - 2017 KIPR Dt a



Logical operators cheat sheet

Boolean English Question True Example False Example

true && false

A && B Are both A and B true? true && true false && true
false && false

true || true
A || B Is at least one of A or B true? false || true false || false
true || false

true && false

(A && B) Is at least one of A or B false? false && true true && true
k false && false

\\ true || true

"'(A || B) Are both of A and B false? false || false false || true

\ true || false

\ ! negates the true or false Boolean test.

Professional Development Workshop E h ll“’
Page :280 © 1993 - 2017 KIPR Dt a.



while, if, and Logical operators

les

while ((get_create lbump() == () && (get_create rbump() == 0))
{

// Code to execute ...

while ((digital( == 0) && (digital(15) == 0))
{
// Code to repeat ...

if ((digital( == 1) || (digital(1z) !'= 0))
{

// Code to execute ...

if ((analog(?) < 517) || (digital(12) == 1))
{
// Code to repeat ...
}

Professional Development Workshop E h ll‘”
Page :281 © 1993 - 2017 KIPR Dt a.



Using Logical operators

What does this say?
/

int main ()
{
create connect() ;

while ((get create lbump() == 0) && (get create rbump() == 0))
{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

Professional Development Workshop E h ll‘”
Page :282 © 1993 - 2017 KIPR Dt a.



Description: Write a program for the KIPR Wallaby that drives the Create

forward for 1 meter or until a bumper is pressed, and then stops.
* How do we check for distance traveled? Answer: get create distance() <
* How do we check for bumper pressed? Answer: get _create rbump() ==

* How do we check for that both are true?
Answer: ( (get create_distance()) < ) && (get _create rbump() == 0))

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Connect to Create. // 1. Connect to Create.

2. Loop: Is distance < 1000 AND not bumped? // 2. Loop: Is distance < 1000 AND not bumped?
1. Drive forward. //  2.1. Drive forward.

3. Stop motors. // 3. Stop motors.

4. Disconnect from Create. // 4. Disconnect from Create.

5. End the program. // 5. End the program.

Professional Development Workshop E h ll“’
Page :283 © 1993 - 2017 KIPR Dt a.



Analysis: Flowchart
\/

Connect to Create.

s distance <
1000
AND not

Drive forward.

\L H Stop motors.

\

Disconnect from Create.

\/

Return 0.

e

Professional Development Workshop E h ll“’
Page :284 © 1993 - 2017 KIPR Dt a.



Solution:

Pseudocode (Comments)

int main ()

{

// 1. Connect to Create.

// 2. Loop: Is distance < 1000
// AND not bumped?

// 2.1. Drive forward.

// 3. Stop motors.

»

// 4. Disconnect from Create.
// 5. End the program.

Page :285

/
/

Source Code

/| int main ()

{
// 1. Connect to Create.
create_connect();

// 2. Loop: Is distance < 1000 AND not bumped?
while ((get_create distance() <

{
// 2.1. Drive forward.

create_drive_direct( ’ )
} // end while

// 3. Stop motors.
create_stop();

// 4. Disconnect from Create.
create_disconnect() ;

// 5. End the program.

\ return 0O;

\| } // end main

) && (get_create rbump() == 0))

Professional Development Workshop
© 1993 - 2017 KIPR

Botball



Reflection: What did you notice after you ran the program?

®* What happens if the Create right bumper is pressed before the Create travels a
distance of 1 meter?

®* What happens if the Create right bumper is not pressed before the Create
travels a distance of 1 meter?

®* What happens if the Create left bumper is pressed instead?

®* How could you also check to see if the Create left bumper is pressed? Answer:

while ((get_create distance()) < ) && (get create lbump() == 0) && (get_create rbump() == 0))

Professional Development Workshop B h ll“’
Page :286 © 1993 - 2017 KIPR Dt a



Resources and Support

Team Home Base
Remind, YAC, Community, PYR, and social media
T-shirts and awards
What to do after the workshop

Professional Development Workshop E h ll‘”
Page :287 © 1993 - 2017 KIPR Dt a



Welcome to the Botball Team Home Base

2017 Team Home Base

The Team Home Base is your resource for:

e Botball online project documentation
e Botball game FAQs
e Other Botball game related resources

Professional Development Workshop E h ll‘”
Page :288 © 1993 - 2017 KIPR Dt a.



http://homebase.kipr.org/

Botball Team Home Base

KIPR Support -]
* E-mail: support@kipr.org - KIPR Instructor
° Phone: 405-579-4609 | -
* Hours: M-F, 8:30am-5:00pm CT | = U -
o New Teacher Videos ONLINE USERS
Forum and FAQ

* Site: http://homebase.kipr.org

¢ Content:
®* Documentation Manual and Examples
® Presentation Rubric & Example Presentation
®* DemoBot Build Instructions & Parts List
®* Controller Getting Started Manual
® Construction Examples
® Hints for New Teams
®* Sensor & Motor Manual
® Game Table Construction Documents
* All 2017 Game Documents

Professional Development Workshop
Page :289 © 1993 - 2017 KIPR

Botball


mailto:support@kipr.org
http://homebase.kipr.org/

Botball Remind

https://www.remind.com/join
OK Regional: @393gf7

Professional Development Workshop B h lr
Page :291 © 1993 - 2017 KIPR Dt a


https://www.remind.com/join

‘\“\\E;”!’f‘ Botball Youth Advisory Council (YAC)

BOTBALL YOUTH ADVISORY COUNCIL

®* We are a group of current and former Botballers who form
Botball’s student government.

®* We work on many projects (e.g. blogs, forums, live-streaming),
with one simple mission: keep making Botball better!

Professional Development Workshop B h ll“’
Page :292 © 1993 - 2017 KIPR Dt a



Page

:293

P:Y:R

Program Your (Botball) Robot

HOME BLOG LINKS START HERE! ACKNOWLEDGEMENTS THE SITE MONKEY

Smart Robots.

Cutting Edge
! Technology.

Program
inC

Botball Programming

PYR Stands for Program Your Robot, and it is an online introductory course in programming
Botball robots. It assumes you can download the programming environment from the Botball
website without further instruction, but is meant for a novice at programming in C. It pro-
vides brief instructions on how to build a demo robot and building a sensor bumper for ex-
periments with the code, but otherwise this site is about programming and the KISS-C Inte-
grated Development Environment. Program Your Robot assumes you can find other sources
for guidance in physical robot construction.

http://botballprogramming.org

Professional Development Workshop
© 1993 - 2017 KIPR

Botball


http://botballprogramming.org/

Social media

Botball Educational Update Page Info

Robotics Program
¥ ¥ % % ¥ (15 ratings)

v Liked ~

| v Following % ~ |

1,874 likes - 165 talking about this - 15
were here
@ Robotics - Educational Organization me

@ 1818 W. Lindsey, Norman, Oklahoma 73069
L. (405) 579-4609
@ Closed until Monday 9:00 am - 5:00 pm

1

xmxxxxxx

G@& @ o
XXXXXIXIXXX TWEETS FOLLOWING FOLLOWERS FAVORITES s Foll
2,606 102 334 16 e ekl
Tweets Tweets & replies Photos & videos
Botguy"" / Botball®

=P R =T

Professional Development Workshop E h ll‘”
Page :294 © 1993 - 2017 KIPR Dt a.



Social media

Botball Educational Robotics Program Muscogee Botball Educational Robotics Program
Nation News's photo er 26 1

Dr. Miller writing code on his iPhone with the web-based KISS IDE.
Creat news! Getting ready for 2016 already!

E Botball Educational Robotics Program

..... . % Botguy ('s a good hug!

Muscogee Nation News

MCN to implement robotics educational program

Sterling Cosper/Editor

Botball aimed at enhancing student STEM training

.. See More

Like - Comment - Share - ¢ 13 (12

ke - Comment - ¢4 29

Professional Development Workshop B h lr’
Page :295 © 1993 - 2017 KIPR Dt a



Tournament awards

Team 12-0001
carroliton,  Toxas

Professional Development Workshop E h ll‘”
Page :297 © 1993 - 2017 KIPR Dt a.



Tournament awards

There are a lot of opportunities for teams to win awards!

®* Tournament Awards
® Qutstanding Documentation
* Seeding Rounds
®* Double Elimination
® Overall (includes Documentation, Seeding, and Double Elimination)

® Judges’ Choice Awards (# of awards depends on # of teams)
* KISS Award
® Spirit of Botball
® Qutstanding Engineering
® Qutstanding Software
® Spirit
® Outstanding Design/Strategy/Teamwork

Professional Development Workshop B h lr’
Page :298 © 1993 - 2017 KIPR Dt a



What to do after the workshop

1. Recruit team members.

If you haven’t already recruited team members you can use the materials from
the workshop to show to interested students.

Page

Hit the ground running.

:299

Do not wait to get started—time is of the essence!

You only have a limited build time before the tournament.

The workshop will still be fresh in your mind if you start now.

Plan on meeting sometime during the first week after the workshop.

Professional Development Workshop B h ll“’
© 1993 - 2017 KIPR Dt a



What to do after the workshop

3. Plan out the season.

® Students will not inherently know how to manage their time. Let’s face
it—it is difficult for many adults!

®* Mark a calendar or make a Gannt chart with important dates:
®* 1st online documentation submission due
®* 2nd online documentation submission due

® 3rd online documentation submission due
® Tournament date

®* Set dates and schedules for team meetings.
®* Plan on meeting a minimum of 4 hours per week.

Professional Development Workshop B h ll“’
Page :300 © 1993 - 2017 KIPR Dt a



What to do after the workshop

4. Build the game board.
® If you can’t build the full game board, you can build % of the board.

®* You could tape the outline of the board onto a floor if you have the right
type of flooring.

4. Organize your Botball kit.

®* Organized parts can lead to faster and easier construction of robots.

4. Understand the game.

®* Go over this with your students on the first meeting after the workshop.

Professional Development Workshop B h ll“’
Page :301 © 1993 - 2017 KIPR Dt a



} // end workshop

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop E h ll‘”
Page :302 © 1993 - 2017 KIPR Dt a


https://www.surveymonkey.com/r/LCYB7RY

