
Professional Development Workshop
© 1993 – 2018 KIPR1Page : #

Before we get started…
1.Sign in, and collect your materials and electronics.

2.KIPR staff may come around and install/copy files as needed.

3.Charge your Wallaby batteries-WHITE to WHITE (refer to next slide)

4.Open the “2018 Parts List” folder, which contains files that list all of
your Botball robot kit components. Please go through the lists and
verify that you have received everything.

5.Build the DemoBot(s).

Welcome to Botball 2018!

Raise your hand if you need help or have questions.

KIPR Robotics
Controller - Wallaby

Professional Development Workshop
© 1993 – 2018 KIPR2Page : #

• For charging the controller’s battery, use only the power
supply which came with your controller.
• It is possible to damage the battery

by using the wrong charger or

excessive discharge!

• The standard power pack is a lithium iron
(LiFe) battery, a safer alternative to lithium polymer
batteries. The safety rules applicable for recharging any
battery still apply:
• Do NOT leave the battery unattended while charging.

• Charge in a cool, open area away from flammable materials.

Charging the Controller’s Battery

Professional Development Workshop
© 1993 – 2018 KIPR3Page : #

Making the Connection

All connections are as follows:

• Yellow to Yellow (battery to controller)

• White small to White small (charger to battery)
• Yours may vary slightly, use caution unplugging

• Black to Black (motors, servos, sensors)

Professional Development Workshop
© 1993 – 2018 KIPR4Page : #

KRC Wallaby Controller Guide

2 Servo
Motor Ports

(Port # 0 & 1)
2 Motor Ports
(Port # 0 & 1)

10 Digital
Sensor Ports
(Port # 0 - 9)

6 Analog
Sensor Ports
(Port # 0 - 5)

2 Motor Ports
(Port # 2 & 3)

2 Servo
Motor Ports

(Port # 2 & 3)

Color Touch Screen

KIPR Robotics Controller
Wallaby

Power Switch

USB

Micro HDMI

Power (external battery
connection)

Download port
(micro USB)

Professional Development Workshop
© 1993 – 2018 KIPR5Page : #

• The KIPR Robotics Controller – Wallaby, uses an external
battery pack for power.
• It will void your warranty to use a battery pack with the Wallaby that

hasn’t been approved by KIPR.

• Make sure to follow the shutdown instruction on the next slide.
Failure to do so will drain your battery to the point where it can
no longer be charged. If you plug your battery into the charger
and the blue lights continue to flash then you have probably
drained your battery to the point where it cannot be charged
again. You can purchase a replacement battery from
www.botballstore.org.

Wallaby Power

http://www.botballstore.org

Professional Development Workshop
© 1993 – 2018 KIPR6Page : #

• From the Wallaby Home Screen press Shutdown
• Select Yes

• Go to your Wallaby screen and check to see if it is
halted (If your Wallaby shows to be unable to be halted, rerun your
last program either to completion or just start and stop it, and this
should clear up any problem)

• Slide the power switch to off AND unplug the
battery, using the yellow connectors, being careful
not to pull on the wires

Wallaby Power Down

Professional Development Workshop
© 1993 – 2018 KIPR7Page : #

Build your robot using the DemoBot Building Guide
(Found on the team Homebase under 2018 team resources)

Build the DemoBots

Professional Development Workshop
© 1993 – 2018 KIPR8Page : #8Page :

Botball 2018
Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)

with significant contributions from KIPR staff

and the Botball Instructors Summit participants

v2018-01-12 r1

Hi! I’m Botguy, the Botball mascot!

Professional Development Workshop
© 1993 – 2018 KIPR9Page : #

KIPR’s mission is to:
• improve the public’s understanding of science, technology, engineering, and math;

• develop the skills, character, and aspirations of students; and

• contribute to the enrichment of our school systems, communities, and the nation.

Thank you for participating!
We couldn’t do it without you!

Professional Development Workshop
© 1993 – 2018 KIPR10Page : #

• Introductions: workshop staff and volunteers

• Food: lunch is on your own

• Workshop schedule: 2 days

Housekeeping

Professional Development Workshop
© 1993 – 2018 KIPR11Page : #

Day 1 Day 2

• Botball Game Review

• Tournament Code Template

• Fun with Functions

• Repetition, Repetition: Counting

• Moving the iRobot Create: Part 1

• Moving the iRobot Create: Part 2

• Color Camera

• iRobot Create Sensors

• Logical Operators

• Resources and Support

Workshop Schedule

• Botball Overview

• Getting started with the KIPR Software Suite

• Explaining the “Hello, World!” C Program

• Designing Your Own Program

• Moving the DemoBot with Motors

• Moving the DemoBot Servos

• Making Smarter Robots with Sensors

• Repetition, Repetition: Reacting

• Motor Position Counters

• Making a Choice

• Line-following

• Homework

Professional Development Workshop
© 1993 – 2018 KIPR12Page : #

Thanks to our national sponsors!

Professional Development Workshop
© 1993 – 2018 KIPR13Page : #

Join Us Online!

To be filled in by Annie

Professional Development Workshop
© 1993 – 2018 KIPR14Page : #

Follow/Join me online

Professional Development Workshop
© 1993 – 2018 KIPR15Page : #

Thanks to our regional sponsors!

Professional Development Workshop
© 1993 – 2018 KIPR16Page : #

Thanks to our regional hosts!

Professional Development Workshop
© 1993 – 2018 KIPR17Page : #17Page :

Botball Overview

What and when?

GCER and ECER

Preview of this year’s game

Homework for tonight

Professional Development Workshop
© 1993 – 2018 KIPR18Page : #

• Produced by the KISS Institute for Practical Robotics (KIPR), a
non-profit organization based in Norman, OK.

• Engages middle and high school aged students in a team-oriented
robotics competition based on national education standards.

• By designing, building, programming, and documenting robots,
students use science, technology, engineering, math, and writing
skills in a hands-on project that reinforces their learning.

What is Botball?

Professional Development Workshop
© 1993 – 2018 KIPR19Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL Jan. – Mar. 7 – 9 Weeks Mar. – Jun. July

• Prof. Dev. workshops.

• Design, build, & program
autonomous robots.

• Document process online.

• Regional tournaments.

• Global Conference on
Educational Robotics.

• International Botball.

2017 2018

Professional Development Workshop
© 1993 – 2018 KIPR20Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL 7 – 9 Weeks Mar. – Jun. July

• Design, build, & program
autonomous robots.

• Document process online.

• Regional tournaments.

• Global Conference on
Educational Robotics.

• International Botball.

2017 2018

• Provides the skills and tools necessary to compete in the tournament.

• Teams will learn to program robots, and will leave with working systems.

• Skills and tools/equipment are kept and are reusable outside of Botball.

• Not a standalone curriculum! Goal is to support team success in Botball!

(For building and programming resources, visit the Team Home Base.)

YOU ARE HERE!

Jan. – Mar.

• Prof. Dev. workshops.

Professional Development Workshop
© 1993 – 2018 KIPR21Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL Jan. – Mar. 7 – 9 Weeks Mar. – Jun. July

• Prof. Dev. workshops.

• Design, build, & program
autonomous robots.

• Document process online.

• Regional tournaments.

• Global Conference on
Educational Robotics.

• International Botball.

2017 2018

• Reinforces computational thinking and the engineering design process.

• Teams must submit three online project documents, which count for points.

• Online support throughout the season from KIPR and other Botball teams.

Professional Development Workshop
© 1993 – 2018 KIPR22Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL 7 – 9 Weeks July

• Design, build, & program
autonomous robots.

• Document process online.

• Global Conference on
Educational Robotics.

• International Botball.

2017 2018

• Practice: teams test and calibrate robot entries on the official game boards

• Seeding rounds: teams compete against the task to score the most points

• Double elimination (DE) rounds: teams compete head-to-head

• Alliance matches: teams eliminated in DE pair up to score points together

• Onsite documentation: 8-minute technical presentation to judges

Jan. – Mar.

• Prof. Dev. workshops.

Mar. – Jun.

• Regional tournaments.

Professional Development Workshop
© 1993 – 2018 KIPR23Page : #

When is Botball?

• Recruit teams.
• Fundraise.
• Apply for scholarships.

FALL 7 – 9 Weeks July

• Design, build, & program
autonomous robots.

• Document process online.

• Global Conference on
Educational Robotics.

• International Botball.

2017 2018

• International Botball Tournament: all teams are invited to participate

• Paper presentations: students may submit and present papers at GCER

• Guest speakers: presentations from academic and industry leaders

• Autonomous showcase: students display projects in a science fair style

Global Conference on Educational Robotics (GCER)

YOU ARE ALL ELIGIBLE!

Jan. – Mar.

• Prof. Dev. workshops.

Mar. – Jun.

• Regional tournaments.

Professional Development Workshop
© 1993 – 2018 KIPR24Page : #

• Indian Wells, California
• aka “Coachella Valley”

• July 25-29, 2018
• International Botball Tournament
• Autonomous Robotics Showcase
• Junior Botball Challenge

GCER-2018

http://gcer.net

• Meet and network with students
from around the country and world

• Talks by internationally recognized
robotics experts

• Teacher, student, and peer
reviewed track sessions

Global Conference on Educational Robotics

http://www.kipr.org/gcer

Professional Development Workshop
© 1993 – 2018 KIPR25Page : #

GCER-2018

Global Conference on Educational Robotics

Autonomous
Aerial
Vehicle
Competition

Preconference classes on July 24th

Global Junior Botball Challenge

KIPR Open Autonomous Robotics Game
• Botball for grown-up kids!

Professional Development Workshop
© 1993 – 2018 KIPR26Page : #

ECER-2018

European Conference on Educational Robotics

• Malta
• In the Mediterranean Sea

• April 16-20, 2018

• European Botball Competition

• Talks by Researchers and Students

Professional Development Workshop
© 1993 – 2018 KIPR27Page : #

Botball game board

Professional Development Workshop
© 1993 – 2018 KIPR28Page : #

Review the game rules on your Team Home Base

• We will have a 30-minute Q&A session tomorrow.

• After the workshop, ask questions about game rules in
the Game Rules Forum.
• You should regularly visit this forum.

• You will find answers to the game questions there.

Homework for tonight

Professional Development Workshop
© 1993 – 2018 KIPR29Page : #

Botball Team Home Base

Found at http://homebase.kipr.org

http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2018 KIPR30Page : #

Botguy Visits the Valley
Botguy has made his way out West and is ready to see how
he can benefit the Coachella Valley community with robotic
applications in agriculture, while getting to enjoy some of the
benefits the valley has to offer. The Coachella Valley is known
for their date farming and their amazing aerial views from the
tram. Botguy has been hired to improve tourism as well as
farming practices in the area, despite frequent limitations on
water for irrigation.

Hold your questions!

Game Q&A is tomorrow!

Preview of this year’s Botball game

Professional Development Workshop
© 1993 – 2018 KIPR31Page : #31Page :

Getting Started with the KIPR Software Suite

What is a programming language?

How can I create new projects and files?

How can I write and compile source code?

How can I run programs on the KIPR Wallaby?

Professional Development Workshop
© 1993 – 2018 KIPR32Page : #

• Computers only understand machine language (stream of bytes),
which computers can read and execute (run).

• Unfortunately, humans don’t speak machine language…

What is a programming language?

Human Computer

Blah! Blah!

Blah! Blah!

??

?

Professional Development Workshop
© 1993 – 2018 KIPR33Page : #

• Humans have created programming languages that allow them (humans) to
write “source code” that is easier for them (humans) to understand.

• Source code is compiled (translated) by a compiler (part of the KIPR Software
Suite) into machine language so that the computer can read and execute (run)
the code.

• Programming languages have funny names (C, C++, Java, Python, …)

What is a programming language?

Programming
Language

Compiler

Translates

Machine
Language

Human Computer

Professional Development Workshop
© 1993 – 2018 KIPR34Page : #

• Connect the Wallaby to your computer using USB Cable
1. Plug battery into Wallaby- YELLOW TO YELLOW.

2. Turn on the Wallaby with the black switch on the side

1. Once your Wallaby has booted, the Wallaby will appear in the list of
available Ethernet connections for your computer.

2. If you get a message about the driver raise your hand for help or go to the
team home base: Troubleshooting->USB driver for instructions

Connect the Wallaby to your computer
at Workshop and Tournament

Insert the
micro-USB end

here

Attach the
USB end to
computer

Professional Development Workshop
© 1993 – 2018 KIPR35Page : #

1. Launch your web browser (such as Chrome or Firefox, but not
Internet Explorer) and power up your Wallaby.

2. Copy this IP address into your browser’s address bar followed by
“:” and port number 8888; e.g.,

192.168.124.1:8888

3. Note that USB cable IP address is 192.168.124.1:8888

4. The user interface for the package will now come up in your
browser.

5. TEST THIS at the workshop

a. See Team Homebase -> 2018 Resources -> Troubleshooting -> USB Driver

Loading the Starting Web Page (USB)

IP address Port #

Professional Development Workshop
© 1993 – 2018 KIPR36Page : #

• Connect the Wallaby to your Browser device via Wi-Fi

• This is great at home or School

• Not recommended at Large Workshops or any Tournament

1. Turn on the Wallaby with the black switch on the side
a. Note: the actual version number you see most likely will be v23 (or higher)

2. Use the info (Wallaby SSID # and Password), from the about page, to connect
via Wi-Fi

Connect the Wallaby to your computer,
Smart Phone or Tablet At School

Professional Development Workshop
© 1993 – 2018 KIPR37Page : #

Connection

When you are connected to your Wallaby,
your device may give various errors; “no
internet connection” or “connected with
limited..”

In the bottom right corner of the KIPR IDE
there is an icon that shows if you are still
connected to the Wallaby.

connected
NOT

connected

Professional Development Workshop
© 1993 – 2018 KIPR38Page : #

1. Launch a web browser such as Chrome or Firefox (Internet
Explorer will not work) and power up your Wallaby. Connect to
the Wallaby via Wi-Fi.

2. Copy this IP address into your browser’s address bar followed by
“:” and port number 8888; e.g.,

192.168.125.1:8888

3. The user interface for the package will now come up in your
browser.

a. Note: during competitions use the USB cable connection (IP address:
192.168.124.1)

4. You may use a computer, tablet or even a smart phone through
Wi-Fi.

Loading the Starting Web Page (Wi-Fi)

IP address Port #

Professional Development Workshop
© 1993 – 2018 KIPR39Page : #

To make it easier for you to
learn and use a programming
language, KIPR provides a
web-based Software Suite
which will allow you to write
and compile source code using
the C programming language.

The development package will
work with almost any web
browser except Internet
Explorer.

How can I write and compile
my own source code?

Professional Development Workshop
© 1993 – 2018 KIPR40Page : #

1. Click on the KISS IDE button.

NOTE: The buttons might be in different locations depending on device type.

Creating your first project

Professional Development Workshop
© 1993 – 2018 KIPR41Page : #

1. Add a new user folder by clicking the + sign in
the Project Explorer.

2. Name your new user folder by the student’s
name to help organization. All of your
different projects will go into this user folder.

Creating your first user folder

Student Name

3. Click Create to complete.

Professional Development Workshop
© 1993 – 2018 KIPR42Page : #

Creating your first project

1. Go back to Project Explorer and select the User
Name you created from the drop down. This is
the folder you created.

2. Click +Add Project. You are adding a project to
your folder.

Professional Development Workshop
© 1993 – 2018 KIPR43Page : #

1. Give your project a descriptive name
• Note: you will have a lot of student’s projects, so consider using their first

name followed by the name of the activity.

2. Give a descriptive Source File Name as well. The Source File
needs to end with a .c
• Then press the Create button.

Name your project

Professional Development Workshop
© 1993 – 2018 KIPR44Page : #

1. Click the Compile button for your project and, if successful, click
Run so you can run your project to see if it works.

NOTE: When you compile, your project is automatically saved.

Compile and Then Run Your Project

Professional Development Workshop
© 1993 – 2018 KIPR45Page : #

Note: one project = one program.

• Click the + Add Project button or click the Menu button to return

to the starting menu.

• Proceed as before.

• The Project Explorer panel will show you all of the user folder

projects and actively edited files.

Starting another project

Professional Development Workshop
© 1993 – 2018 KIPR46Page : #46Page :

Explaining the “Hello, World!” C Program

Program flow and the main function

Programming statements and functions

Comments

Professional Development Workshop
© 1993 – 2018 KIPR47Page : #

“Hello, World!”

Note: We will use this template
every time; we will delete lines

we don’t want, and we will
add lines that we do want.

Professional Development Workshop
© 1993 – 2018 KIPR48Page : #

Program flow and line numbers

End

Begin

Print "Hello, World!"

Return 0

Top

Bottom

Computers read a program just like you read a book—
they read each line starting at the top and go to the bottom.

Computers can read incredibly quickly—
Millions of lines per second!

Professional Development Workshop
© 1993 – 2018 KIPR49Page : #

Source code

This is the source code for our first C program.

Let’s look at each part of the source code.

Professional Development Workshop
© 1993 – 2018 KIPR50Page : #

The main function

// Created on Thu January 5 2018

int main()

{

printf("Hello, World!\n");

return 0;

}

This is the main() function.

When you run your program,
the main function is executed.

A C program must have
exactly one main() function.

A function defines a list of actions to take.
A function is like a recipe for baking a cake.

When you call (use) the function,
the program follows the instructions and bakes the cake.

Professional Development Workshop
© 1993 – 2018 KIPR51Page : #

Block of code

// Created on Thu January 5 2018

int main()

{

printf("Hello, World!\n");

return 0;

}

Begin

End

This is a block of code.

A block of code should
always be preceded by
a block header, which is
the line just before the {A block is defined between a

beginning curly brace { and an
ending curly brace }

The list of actions that the function performs is defined inside a
block of code.

Block Header

Professional Development Workshop
© 1993 – 2018 KIPR52Page : #

Programming statements

// Created on Thu January 5 2018

int main()

{

printf("Hello, World!\n");

return 0;

}

Inside the block of code
(between the { and } braces),
we write lines of code called
programming statements.

Each programming statement
is an action to be executed by
the computer (or robot)
in the order that it is listed.

There can be any number of
programming statements
within a block of code.

Statement #1 →
Statement #2 →

Professional Development Workshop
© 1993 – 2018 KIPR53Page : #

Ending a programming statement

// Created on Thu January 5 2018

int main()

{

printf("Hello, World!\n");

return 0;

}

Each programming statement
ends with a semicolon ;
(unless it is followed by a new
block of code).

This is similar to an English sentence, which ends with a period.

If an English sentence is missing a period, then it is a run-on sentence.

Professional Development Workshop
© 1993 – 2018 KIPR54Page : #

Ending the main function

// Created on Thu January 5 2018

int main()

{

printf("Hello, World!\n");

return 0;

}

The main function ends with a
return statement, which is a
response or answer to the
computer (or robot).

In this case, the “answer” back
to the computer is 0.The return statement is

generally the last line before
the } brace.

Professional Development Workshop
© 1993 – 2018 KIPR55Page : #

Comments

// Created on Thu January 5 2018

int main()

{

printf("Hello, World!\n");

return 0;

}

The green text at the top of the program is called a “comment”.

Comments are helpful notes
that can be read by you or
your team—they are ignored
(not read) by the computer!

Professional Development Workshop
© 1993 – 2018 KIPR56Page : #

// Commenting for the flow of code

The KISS IDE highlights parts of a program to make it easier to read.
(By default, the KISS IDE colors your code and adds line numbers.)

• Includes in purple

• Comments in green

• Text strings appear in red

• Keywords appear in blue

Text color highlighting

Professional Development Workshop
© 1993 – 2018 KIPR57Page : #

Description: Write a program for the KIPR Wallaby that prints your name.

Solution:

Print your name

int main()

{

// 1. Print your name.

printf("Botguy\n");

// 2. End the program.

return 0;

}

Source Code Flowchart

STOP

START

Print your name.

Return 0

Professional Development Workshop
© 1993 – 2018 KIPR58Page : #58Page :

Designing Your Own Program

Breaking down a task

Pseudocode, flowcharts, and comments

wait_for_milliseconds function

Debugging your program

Professional Development Workshop
© 1993 – 2018 KIPR59Page : #

• Break down the objectives (complex tasks) into smaller objectives
(simple subtasks).

• Break down the smaller tasks into even smaller tasks.
Continue this process until each subtask can be accomplished by a
list of individual programming statements.

• For example, the larger task might be to make a PB&J Sandwich
which has smaller tasks of getting the bread and PB&J ready and
then combining them.

Complex tasks → simple subtasks

Professional Development Workshop
© 1993 – 2018 KIPR60Page : #

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!” on one line, and then prints your name on the next line.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Print “Hello, World!” // 1. Print "Hello, World!"

2. Print your name. // 2. Print your name.

3. End the program. // 3. End the program.

Practice printing

Begin

Print “Hello, World!”

Print your name.

End

Return 0

Flowchart

In English,
write a list of actions
to solve an activity.

These are three different
ways to do this.

Professional Development Workshop
© 1993 – 2018 KIPR61Page : #

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.
• Note: remember to give your project and file descriptive (unique) names!

Execution: Compile and run your program on the KIPR Wallaby.

Practice printing

int main()

{

// 1. Print "Hello, World!"

// 2. Print your name.

// 3. End the program.

}

Pseudocode (Comments)
int main()

{

// 1. Print "Hello, World!"

printf("Hello, World!\n");

// 2. Print your name.

printf("Botguy\n");

// 3. End the program.

return 0;

}

Source Code

Helps you write
the real code!

Professional Development Workshop
© 1993 – 2018 KIPR62Page : #

Reflection: What did you notice after you ran the program?

• The Wallaby reads code and goes to the next line faster than a blink of your eye.

• At 800MHz, the Wallaby is executing millions of lines of code per second!

• To control a robot, sometimes it is helpful to wait for some duration of time
after a function has been called so that it can actually run on the robot.

• To do this, we use the built-in function called wait_for_milliseconds(),
later this can be shortened to msleep()

Practice printing

Let’s use this!

Professional Development Workshop
© 1993 – 2018 KIPR63Page : #

Using msleep()

int main()

{

printf("Hello ");

msleep(2500); // wait for 2500 ms

printf("what is your name?\n");

return 0;

}

What is this?

Another name for wait_for_milliseconds() is msleep().
It is identical and shorter to type, but more difficult to remember.

msleep(2500) is the same as wait_for_milliseconds(2500).

Professional Development Workshop
© 1993 – 2018 KIPR64Page : #

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!" on one line, waits two seconds, and then prints your name
on the next line.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Print “Hello, World!” // 1. Print "Hello, World!"

2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Print your name. // 3. Print your name.

4. End the program. // 4. End the program.

Waiting for some time

Begin

Print “Hello, World!”

Wait for 2 seconds.

Print your name.

End

Return 0

Flowchart

New!

Professional Development Workshop
© 1993 – 2018 KIPR65Page : #

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.
• Note: remember to give your project and file descriptive (unique) names!

Execution: Compile and run your program on the KIPR Wallaby.

Waiting for some time

int main()

{

// 1. Print "Hello, World!"

// 2. Wait for 2 seconds.

// 3. Print your name.

// 4. End the program.

}

Pseudocode (Comments)

int main()

{

// 1. Print "Hello, World!"

printf("Hello, World!\n");

// 2. Wait for 2 seconds.

msleep(2000);

// 3. Print your name.

printf("I'm Botguy\n");

// 4. End the program.

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR66Page : #

Reflection: What did you notice after you ran the program?

• Did your code work the first time you typed it in?

• Did you have any errors?

Waiting for some time

Professional Development Workshop
© 1993 – 2018 KIPR67Page : #

!!! ERROR !!!

• If you do not follow the rules of the programming language, then
the compiler will get confused and not be able to translate your
source code into machine code—it will say “Compile Failed!”

• The Wallaby will try to tell you where it thinks the error is located.

• The process of trying to resolve this error is called “debugging”.

• To test this, remove a ; from one of your programs and compile it.

• How about if you remove a " from one of your printf statements?

• What if you type msleep as Msleep?

Debugging Errors

Professional Development Workshop
© 1993 – 2018 KIPR68Page : #

Debugging Errors

line # : col # (the error is on or before line # 6)

“ expected ; ” (semicolon)

When there is an error, you can ignore the first error line
(“In function ‘main’”) and read the next to see what
the first error is. If you have a lot of errors, start fixing
them from the top going down. Fix one or two and
recompile.

Professional Development Workshop
© 1993 – 2018 KIPR70Page : #70Page :

Moving the DemoBot with Motors

Plugging in motors (ports and direction)

motor functions

Professional Development Workshop
© 1993 – 2018 KIPR71Page : #

• To program your robot to move, you need to know
which motor ports your motors are plugged into.

• Computer scientists tend to start counting at 0, so the
motor ports are numbered 0, 1, 2, and 3.

Check your robot’s motor ports

Professional Development Workshop
© 1993 – 2018 KIPR72Page : #

Wallaby motor ports

Motor Ports 0, 1, 2, and 3

Motor Labels are
on the Case

Professional Development Workshop
© 1993 – 2018 KIPR73Page : #

• Motors have red wire and a black wire with a two-prong plug.

• The Wallaby has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.

• When a port is powered (receiving motor commands), it has a light that glows
green for one direction and red for the other direction.

• Plug orientation order determines motor direction.

• By convention, green is forward (+) and red is reverse (−)
• Unless you plug in the motors “backwards”.

Plugging in motors

Drive motors have
a two-prong plug.Motor Port #3

Motor Port #2

Professional Development Workshop
© 1993 – 2018 KIPR74Page : #

Plugged in motors

DemoBot Motor Ports 0 (right wheel) and 2 (left wheel)

Professional Development Workshop
© 1993 – 2018 KIPR75Page : #

You want your motors going in the same direction;
otherwise, your robot will go in circles!

• Motors have a red wire and a black wire with a two-prong plug.

• There is no left side or right side.

• You can plug these in two different ways:
• One direction is clockwise, and the other direction is counterclockwise.

• The red and black wires help determine motor direction.

Motor direction

1 2 2 1

Professional Development Workshop
© 1993 – 2018 KIPR76Page : #

There is an easy way to check this!
• Manually rotate the tire, and you will see an LED light up by the motor port

(the port # is labeled on the board).

• If the LED is green, it is going forward (+).

• If the LED is red, it is going reverse (−).

• Use this trick to check the port #’s and direction of your motors.

• If one is red and the other is green,
turn one motor plug 180° and plug it back in.

• The lights should both be green if the robot is moving forward.

Motor port and direction check

Professional Development Workshop
© 1993 – 2018 KIPR77Page : #

Use the Motor Widget

Professional Development Workshop
© 1993 – 2018 KIPR78Page : #

There are several functions for motors.
We will begin with motor.

motor(0, 100);

// Turns on motor port #0 at 100% power.

// Select any power between -100% and 100%.

msleep(# milliseconds);

// Wait for the specified amount of time.

ao();

// Turn off all of the motors.

Common motor functions

Motor port #
(between 0 and 3)

A positive number should drive
the motor forward; if not,

rotate the motor plug 180°.

A negative number should
drive the motor reverse.

If two drive motors are plugged
in in opposite directions from
each other, then the robot will

go in a circle.

Professional Development Workshop
© 1993 – 2018 KIPR79Page : #

Using motor and ao

int main()

{

motor(0, 100);

motor(2, 100);

msleep(2500);

ao();

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR80Page : #

Until you are familiar with the functions that you will be using,
use this cheat/hint sheet as an easy reference.

Copying and pasting your own code is also very helpful.

KIPR Wallaby functions hint sheet

printf("text\n"); // Prints the specified text to the screen

msleep(# milliseconds); // Another name for wait_for_milliseconds (identical)

motor(port #, % velocity); // Turns on motor with port # at specified % velocity

motor_power(port #, % power); // Turns on motor with specified port # at specified % power

mav(port #, velocity); // Move motor at specified velocity (# ticks per second)

mrp(port #, velocity, position); // Move motor to specified relative position (in # ticks)

ao(); // All off; turns all motor ports off

enable_servos(); // Turns on servo ports

disable_servos(); // Turns off servo ports

set_servo_position(port #, position); // Moves servo in specified port # to specified position

wait_for_light(port #); // Waits for light in specified port # before next line

wait_for_touch(port #); // Waits for touch in specified port # before next line

analog(port #) // Get a sensor reading from a specified analog port #

digital(port #) // Get a sensor reading from a specified digital port #

shut_down_in(time in seconds); // Shuts down all motors after specified # of seconds

Professional Development Workshop
© 1993 – 2018 KIPR81Page : #

Access the Wallaby documentation by selecting the Help button in the KISS IDE

Wallaby Library Documentation

Professional Development Workshop
© 1993 – 2018 KIPR82Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward at 80% power for two seconds, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Drive forward at 80%. // 1. Drive forward at 80%.

2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Stop motors. // 3. Stop motors.

4. End the program. // 4. End the program.

Moving the DemoBot

Begin

Drive forward at 80%.

Wait for 2 seconds.

Stop motors.

End

Return 0

Flowchart

Professional Development Workshop
© 1993 – 2018 KIPR83Page : #

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.
• Note: remember to give your project and file descriptive, unique names!

Execution: Compile and run your program on the KIPR Wallaby.

Moving the DemoBot

int main()

{

// 1. Drive forward at 80%.

// 2. Wait for 2 seconds.

// 3. Stop motors.

// 4. End the program.

}

Psuedocode (Comments)

int main()

{

// 1. Drive forward at 80%.

motor(0, 80);

motor(2, 80);

// 2. Wait for 2 seconds.

msleep(2000);

// 3. Stop motors.

ao();

// 4. End the program.

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR84Page : #

Reflection: What did you notice after you ran the program?

• Did the DemoBot move forward?

• Positive (+) numbers should move the motors in a clockwise direction
(forward); if not, rotate the motor plug 180° where it plugs into the
Wallaby.

• If your robot moves in a circle, one motor is either not moving (is it plugged
in?) or they are moving in opposite directions (rotate the motor plug 180°).

• Did the DemoBot drive straight?

• How could you adjust the code to make the robot drive straight?

• How can you make the robot drive backwards?

• How can you make the robot turn left or right?

Moving the DemoBot

Professional Development Workshop
© 1993 – 2018 KIPR85Page : #

Remember your # line:
positive numbers (+) go forward and negative numbers (−) go in reverse.

Driving straight: it is surprisingly difficult to drive in a straight line…
• Problem: Motors are not exactly the same.
• Problem: The tires might not be aligned perfectly.
• Problem: One tire has more resistance.
• Solution: You can adjust this by slowing down or speeding up the motors.

Making turns:
• Solution: Have one wheel go faster or slower than the other.
• Solution: Have one wheel move while the other one is stopped.
• Solution: Have one wheel move forward and the other wheel move in reverse

(friction is less of a factor when both wheels are moving).

Robot driving hints

And many, many
other reasons…

Reverse Forward

Professional Development Workshop
© 1993 – 2018 KIPR86Page : #

You have a paper copy of this activity in your registration packet.

1) Start with DemoBot completely within the starting box on mat A.

2) Move a stack of 4 poms that starts on circle 2 or 4 into the
appropriate garage. (green, orange, then blue)

3) The poms must come to rest completely within the colored garage.

4) The robots cannot push the poms over the solid lines that bound
the garages.

5) Advance extension: remove the top pom from the stack or make
sure that it is not touching the surface of the garage in which the
other poms are located.
1) See Team Home Base -> 2018 Resources -> Mechanical Engineering document.

Activity 1 (connections to the game)

Professional Development Workshop
© 1993 – 2018 KIPR87Page : #

Some reasons to use a variable:

1. You don’t have to remember which port # is your right wheel
and which is your left – the computer remembers for you

2. It makes your program easier to read and understand

3. Makes it easier to debug your program

4. You can do computation and store results in variables

Variables

Professional Development Workshop
© 1993 – 2018 KIPR88Page : #

• A variable is a named container that stores a type of value
A variable has the following three components:

a. the type of data it stores (holds),

b. the name, and

c. the value.

• Visualize/think of a variable like a storage space that holds a value
with a name on it…

• Left wheel motor port

• Right wheel motor port

• etc

Variables

int left;

left = 2;

a b

c
Use int as your

data type if you want

to store whole

numbers (integers)

2left

0right

Professional Development Workshop
© 1993 – 2018 KIPR89Page : #

Each variable is given a unique name so we can identify it…
• Variable names can be almost anything you would like.

• Variable names can contain letters, numbers, and underscores (“_”).

• Variable names cannot begin with a number.

• Variable names should be meaningful and not “x”

An Example:

int right; // variable declaration

right = 0; // variable "initialization"

You can do the declaration and initialization at the same time

int right = 0;

Variable names

Professional Development Workshop
© 1993 – 2018 KIPR90Page : #

1. Creating/declaring a variable:

int left;

2. Setting a variable:

left = 2;

right = 0;

2. Using a variable:

left

What is int?

int stands for “integer”. This

means that the variable left

will have an integer (whole

number) value.

See the team home base: 2018 Game Manuals ->

Advanced Team Resources document for more

information on data types

Working with Variables

https://docs.google.com/presentation/d/1Qri0LWEH7ovnkzvLA5ercOjRevTRIOw79klduqo5dTI/edit#slide=id.g16beb6e05d_2_0

Professional Development Workshop
© 1993 – 2018 KIPR91Page : #

Using Variable for Drive Motors

1. Variable declarations should go inside a block of code (i.e., inside the { })
immediately after the starting curly brace (i.e., {) and before any other code.

int main ()

{

// left = 2

// right = 0

printf("Drive and turn\n");

motor(2, 100);

motor(0, 100);

msleep(1000);

motor(2, -50);

motor(0, 50);

msleep(500);

return 0;

}

int main ()

{

int left = 2;

int right = 0;

printf("Drive and turn\n");

motor(left, 100);

motor(right, 100);

msleep(1000);

motor(left, -50);

motor(right, 50);

msleep(500);

return 0;

}

Remove the forward

slashes from your

comments, add int

for the data type and

since it is now code

add the semicolon

Professional Development Workshop
© 1993 – 2018 KIPR92Page : #92Page :

Moving the DemoBot Servos

Plugging in servos (ports)

enable_servos and disable_servos functions

set_servo_position function

Professional Development Workshop
© 1993 – 2018 KIPR93Page : #

• A servo motor (or servo for short) is a motor that rotates to a specified
position between ~0° and ~180°.

• Servos are great for raising an arm or closing a claw to grab something.

• Servo motors look very similar to non-servo motors, but there are differences…

• A servo has three wires (orange, red, and brown) and a black plastic plug.

• A non-servo motor has two gray wires and a two-prong plug.

Servos

Large servo

Micro servo

Professional Development Workshop
© 1993 – 2018 KIPR94Page : #

KIPR Robotics Controller servo ports

Servo Ports 0, 1, 2, and 3

Professional Development Workshop
© 1993 – 2018 KIPR95Page : #

• The KIPR Robotics Controller has 4 servo ports numbered 0 (left) & 1 (right) on
the left, and 2 (left) & 3 (right) on the right.

• Notice that the case of the KIPR Robotics Controller is marked:

• (S) for the orange (signal) wire, which regulates servo position

• (+) for the red (power) wire

• (−) for the brown (ground) wire (“the ground is down, down is negative”)

Plugging in Servos

(S) signal wire
(+) power wire
(–) ground wire

Servo Port #3
Servo Port #2 NOTICE:

orientation
plugging in the
servos is very
important

Professional Development Workshop
© 1993 – 2018 KIPR96Page : #

0

1024

2047

1900150

• Think of a servo like a protractor…
• Angles in the ~180° range of motion (between ~0° and ~180°) are divided

into 2048 servo positions.

• These 2048 positions range from 0 to 2047, but due to internal mechanical
hard stop variability you should use ~150 to ~1900

(remember: computer scientists start counting with 0, not 1).

• This allows for greater precision when setting a position
(you have ~2048 different positions to choose from instead of just 180).

• The default position is 1024
(centered).

Servo positions

Professional Development Workshop
© 1993 – 2018 KIPR97Page : #

Use the Servo widget

Professional Development Workshop
© 1993 – 2018 KIPR98Page : #

Testing Servos with the Servos screen

Select the
servo port

The current
servo position

Enable
servos

Professional Development Workshop
© 1993 – 2018 KIPR99Page : #

Testing Servos with the Servos screen

Servo @ 2047
(maxed out)

Servo @ 1513 Servo @ 537

Use your finger
to move the dial.

Do not push a servo beyond its limits
(less than ~150 or more than ~1900).
This can burn out the servo motor!

Professional Development Workshop
© 1993 – 2018 KIPR100Page : #

Testing Servos with the Servos screen

Disable
servos

Currently the Disable button does NOT
disable the newer servos. To disable it

you will have to unplug the servo.

Professional Development Workshop
© 1993 – 2018 KIPR101Page : #

Centering the Servo Horn

1024

• The Servo motor only has a range of motion (rotates) ~180

degrees, but you cannot see by looking at the motor where this

range of motion is located in relation to your robot

• Using the Servo Widget, enable the servo on your robot. When

you enable it, it will go to 1024. You can unscrew the servo horn on

your arm or claw and place it in the center of the rotation if it is not

already in the correct position

Professional Development Workshop
© 1993 – 2018 KIPR102Page : #

• To help save power, servo ports by default are not active until they are
enabled.

• Functions are provided for enabling or disabling all servo ports.

• A function is also provided for setting the position of a servo.

enable_servos(); // Enable (turn on) all servo ports.

set_servo_position(2, 925); // set servo on port #2 to position 925.

disable_servos(); // Disable (turn off) all servo ports.

• Note: it takes the servo TIME to move to a position so if you set it to another position
without giving it TIME the CODE runs very fast and does not wait for the servo to move

• The default position when servos are enabled is 1024 (centered), which means that all
servos will automatically move to this position when enable_servos is called.

• You can “preset” a servo position by calling set_servo_position before calling
enable_servos. This will make the servo move to this position rather than center.

Servo functions

Professional Development Workshop
© 1993 – 2018 KIPR103Page : #

Description: Write a function for the KIPR Wallaby that waves the
DemoBot servo arm up and down.
• Remember to enable the servos at the beginning of your program,

and disable the servos at the end of your program!

• Warning: The arm mounted on your DemoBot prevents the servo from freely
rotating to all possible positions (it will run into the KIPR Wallaby controller or
the chassis of the robot)!
• Do not keep trying to move a servo to a position it cannot reach, as this can burn out the servo

and also consume a lot of power from your robot.

• Use the Servo screen to determine the limits of the DemoBot arm, write these numbers down,
and then use these numbers in your code.

Wave the servo arm

Professional Development Workshop
© 1993 – 2018 KIPR104Page : #

Description: Write a program for the KIPR Wallaby that waves the
DemoBot servo arm up and down. Write a function that does one
wave. Call it from your main function

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Enable servos. // 1. Enable servos.

2. Move servo to up. // 2. Move servo to UP.

3. Wait for 3 seconds. // 3. Wait for 3 seconds.

4. Move servo to down. // 4. Move servo to DOWN.

5. Wait for 3 seconds. // 5. Wait for 3 seconds.

6. Disable servos. // 6. Disable servos.

7. End the program. // 7. End the program.

Wave the servo arm

Professional Development Workshop
© 1993 – 2018 KIPR105Page : #

Analysis:

Wave the servo arm

Flowchart

Begin

Enable servos.

Move servo to Your UP limit.

Wait for 3 seconds.

Disable servos.

End

Return 0

Move servo to Your DOWN limit.

Wait for 3 seconds.

Professional Development Workshop
© 1993 – 2018 KIPR106Page : #

Commenting your servo port and
placement within your program

int main ()

{

// arm = 0

// down = 400

// up = 1230

printf("Wave Servo Exercise\n");

return 0;

}

This (keeping track of your ports, positions, etc) could also be done in a
notebook, but what if you misplace that notebook?

Make your comments after the first
curly bracket and before the printf

Arm is plugged into servo port 0

Arm down position is 400

Arm up position is 1230

Professional Development Workshop
© 1993 – 2018 KIPR107Page : #

Using Variables for Servo Motors

int main ()

{

// arm = 0

// up = 1230

// down = 400

printf("Wave servo\n");

enable_servos();

set_servo_position(0,1230);

msleep(3000);

set_servo_position(0,400);

msleep(3000);

return 0;

}

int main ()

{

int arm = 0;

int up = 1230;

int down = 400;

printf("Wave servo\n");

enable_servos();

set_servo_position(arm,up);

msleep(3000);

set_servo_position(arm,down);

msleep(3000);

return 0;

}

Remove the forward

slashes from your

comments, add int

for the data type and

since it is now code

add the semicolon

Professional Development Workshop
© 1993 – 2018 KIPR108Page : #

Using servo functions

int main()

{

set_servo_position(2, 1500);

enable_servos();

//msleep(1000);

set_servo_position(2, 925);

msleep(1000);

set_servo_position(2, 675);

msleep(1000);

disable_servos();

return 0;

}

What happens when we
set the servo position

before enable_servos?

Professional Development Workshop
© 1993 – 2018 KIPR109Page : #

1. Start with your DemoBot at least partially within the starting box.
See extension for more practical application.

2. Using a servo controlled claw move large yellow cube(s) from the
orange garage into the blue garage.

3. The robot cannot touch the solid lines of any of the garages

4. Refer to your hand out for extension activities

Activity 2 (connections to the game)

Professional Development Workshop
© 1993 – 2018 KIPR110Page : #

Lunch!

Professional Development Workshop
© 1993 – 2018 KIPR111Page : #111Page :

Making Smarter Robots with Sensors

analog() and digital() sensors

wait_for_light() function

Professional Development Workshop
© 1993 – 2018 KIPR112Page : #

• You might have realized how difficult it is to be
consistent with just “driving blind”.

• By adding sensors to our robots, we can allow them to
detect things in their environment and make decisions
about them!

• Robot sensors are like human senses!
• What senses does a human have?

• What sensors should a robot have?

Sensors

Professional Development Workshop
© 1993 – 2018 KIPR113Page : #

Analog Sensors

• Range of values:

0 – 4095

• Ports: 0 – 5

• Function: analog(port #)

• Sensors:

• Light

• Small reflectance

• Large reflectance

• Slide sensor

Digital Sensors

• Range of values:

0 (not pressed) or 1 (pressed)

• Ports: 0 – 9

• Function: digital(port #)

• Sensors:

• Large touch

• Small touch

• Lever touch

Analog and digital sensors

Professional Development Workshop
© 1993 – 2018 KIPR114Page : #

KIPR Robotics Controller sensor ports

Digital Sensors
Ports # 0 – 9

Analog Sensors
Ports # 0-5

Sensor Plug
Orientation

Professional Development Workshop
© 1993 – 2018 KIPR115Page : #

There are many digital sensors in your kit that can detect touch…

Select the one that can be easily attached and can easily detect the objects.

Detecting touch

Lever touchSmall touchLarge touch

Professional Development Workshop
© 1993 – 2018 KIPR116Page : #

Plug your
touch sensor

into digital
port 0

Sensor plug
orientation

Plug in a Touch Sensor

Closeup of sensor

plug orientation

Professional Development Workshop
© 1993 – 2018 KIPR117Page : #

Select Sensor List

You can access the Sensor Values from the Sensor List on your
Wallaby

• This is very helpful to get readings from all of the sensors you
are using, and then you can then use the values in your code

Reading Sensor Values
From the Sensor List

Professional Development Workshop
© 1993 – 2018 KIPR118Page : #

Scroll down to the digital sensor and
read the value when your touch sensor
is pressed and when it is not pressed

Check Touch Sensor on Wallaby
Screen

Professional Development Workshop
© 1993 – 2018 KIPR119Page : #

Use the sensor graph

Professional Development Workshop
© 1993 – 2018 KIPR120Page : #

You call for the analog sensor value with a function

• You have 6 analog ports (0-5)

analog(Port#) analog(1)

You call for the digital sensor value with a function

• You have 10 digital ports (0-9)

digital(Port#) digital(8)

NOTE: when you call these functions they return an INTEGER value
into the “code” where they were called at the time the code is run.

Remember Your Sensor Functions

Professional Development Workshop
© 1993 – 2018 KIPR123Page : #123Page :

Introduction to while loops

Program flow control with sensor driven loops

while and Boolean operators

Professional Development Workshop
© 1993 – 2018 KIPR124Page : #

• What if we want to repeat the same “item/action” over and over
(and over and over)?
• For example, checking to see if a touch sensor has been pressed.

• We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Program flow control with loops

Professional Development Workshop
© 1993 – 2018 KIPR125Page : #

Analysis: Flowchart

Drive until sensor is pressed

Is it
touched?

Stop motors.

Begin

End

Return 0

Drive forward.

NO
YES

Professional Development Workshop
© 1993 – 2018 KIPR126Page : #

Analysis: Flowchart

Drive until sensor is pressed

Is it
touched?

Stop motors.

NO
YES

Begin

End

Return 0

Drive forward.

This part of the code
is the loop.

Professional Development Workshop
© 1993 – 2018 KIPR127Page : #

while Loops

while (condition)

{

Code to execute while

the condition is true

}

Notice there is no
terminating
semicolon after
the while
statement

We accomplish this loop with a while statement.

while statements keep a block of code running

(repeating/looping) so that sensor values can be continually
checked and a decision made.
The while statement checks to see if something is true or false (via
Boolean operators).

Professional Development Workshop
© 1993 – 2018 KIPR128Page : #

while (digital(port#) == 0)

Type of sensor;
analog, digital,
analog

Port number;
analog (0-5)
digital (0-9)

Boolean logic;
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal to
!=Not equal to{

motor(0,100);

motor(3,100);

}
Code to execute while the
condition is true

Notice no
terminating
statement

While Statement

Professional Development Workshop
© 1993 – 2018 KIPR129Page : #

The while loop checks to see if a Boolean test is true or false…
• If the test is true, then the while loop continues to execute the block of code that immediately

follows it.

• If the test is false, then the while loop finishes, and the line of code after the block of code is
executed.

while loops

int main()

{

// Code before loop

while (Boolean test)

{

// Code to repeat ...

}

// Code after loop

.

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR130Page : #

The while loop checks to see if a Boolean test is true or false…
• If the test is true, then the while loop continues to execute the block of code that

immediately follows it.

• If the test is false, then the while loop finishes, and the line of code after the block of
code is executed.

while loops

int main()

{

// Code before loop

while (Boolean test)

{

// Code to repeat ...

}

// Code after loop

return 0;

}

Begin

End

Block Header
(no semicolon!)

Professional Development Workshop
© 1993 – 2018 KIPR131Page : #

The Boolean test in a while loop is asking a question:

Is this statement true or false?

• The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:

== Equal to (NOTE: two equal signs, not one which is an assignment!)

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

while and Boolean operators

Professional Development Workshop
© 1993 – 2018 KIPR132Page : #

Boolean English Question True Example False Example

A == B Is A equal to B? 5 == 5 5 == 4

A != B Is A not equal to B? 5 != 4 5 != 5

A < B Is A less than B? 4 < 5 5 < 4

A > B Is A greater than B? 5 > 4 4 > 5

A <= B Is A less than or equal to B?
4 <= 5

5 <= 5
6 <= 5

A >= B Is A greater than or equal to B?
5 >= 4

5 >= 5
5 >= 6

Boolean operators cheat sheet

Professional Development Workshop
© 1993 – 2018 KIPR134Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward until a touch sensor is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Drive forward. // 1. Drive forward.

2. Loop: Is not touched? // 2. Loop: Is not touched?

3. Stop motors. // 3. Stop motors.

4. End the program. // 4. End the program.

Drive until sensor is pressed

Professional Development Workshop
© 1993 – 2018 KIPR135Page : #

Solution:

Drive until sensor is pressed

int main()

{

// 1. Loop: Is not touched?

// 1.1. Drive forward.

// 2. Stop motors.

// 3. End the program.

}

Comments

int main()

{

printf("Drive until bump\n");

while (digital(0) == 0)

{

motor(0, 75);

motor(2, 75);

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR136Page : #

#include <kipr/botball.h>

int main()

{

printf("Drive until bump\n");

while (digital(0) == 1)

{

motor(0,50);

motor(2,50);

}

ao();

return 0;

}

1. Change the expected (test condition) value from 0 to 1

2. Objective: Predict/describe what you think the robot will do

3. Run the program

What if you change 0 to 1?

Professional Development Workshop
© 1993 – 2018 KIPR137Page : #

• Returns the analog value of the port (a value
in the range 0-4095). Analog ports are
numbered 0-5.

• Light sensors, slide, range finders and
reflectance are examples of sensors you
would use in analog ports.

“ET”-rangefinder

Small IR Reflectance Sensor

Light Sensor

Slide Sensor

Learning about Analog Sensors

Professional Development Workshop
© 1993 – 2018 KIPR138Page : #138Page :

Measuring Distance

Infrared “ET” distance sensor

Professional Development Workshop
© 1993 – 2018 KIPR139Page : #

Plug in Your ET Sensor

Plug your
analog

sensor into
analog port o

Sensor plug
orientation

“ET”-rangefinder
(or Wall-E?)

Professional Development Workshop
© 1993 – 2018 KIPR140Page : #

Sensor Ports Sensor Values

Read the values when your ET sensor is pointed at an object and
slowly move it toward/away from the object

(this is a distance sensor)

“ET”-rangefinder
(or Wall-E?)

Check ET Sensor on Wallaby Screen

Professional Development Workshop
© 1993 – 2018 KIPR141Page : #

ET (Wall - E) Sensor Information

• Low values: indicate greater distance (farther from robot)
• High values: indicate shorter distance (closer to robot)
• Optimal range is ~4” and up
• 0” to 3.5” values are not optimal.
• Objects closer than the focal point (~4”) will have the same

readings as those far away.

Professional Development Workshop
© 1993 – 2018 KIPR142Page : #

~2700

Objects that are farther away return a smaller
number

0 400 900 900150020002600 0

Focal Point

Objects that are
inside the focal
point return a
smaller #, too
close to object

Useful range of the sensor

You may need to adjust the value chosen, up or down a little, for your desired

distance from an object. Optimal distance is about 4.5” away from the sensor.

ET sensor Values

Professional Development Workshop
© 1993 – 2018 KIPR143Page : #

Using the sensor values you should see that the farther away an
object is the lower the value returned. The closer an object is
the higher the value until you get within ~4” of the sensor.

1. Extend your arm in front of you with your thumb pointed up.

2. Focus on your thumb and then slowly bring your thumb
toward your face.

3. What happens when your thumb gets close to your face?

– Did it get blurry? Yes! It got within the focal point of your
eyes (where you could focus on it and make it clear)

4. The ET sensor also has a focal point and if the object is too
close the sensor cannot tell if it is close or far away.

5. When attaching your ET sensor to your robot consider the ~4”
distance from you sensor to its focal point

ET Sensor Focal Point Problem

Professional Development Workshop
© 1993 – 2018 KIPR144Page : #

while (analog(port#) <= ?)

Type of sensor:
analog, digital,

Port number:
analog 0-5
digital 0-9

Boolean logic
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal to

!=Not equal to
{
motor (0,40);

motor (2,40);

}
What you want it to repeat while
checking to see if the while
statement is true

Notice no
terminating
statement

Learning to Use an ET Analog
Sensor

Professional Development Workshop
© 1993 – 2018 KIPR145Page : #

1. Open a new project, “name Find the Wall”.
2. Write and compile a program that will find the

wall and stop.
Pseudocode (Task Analysis)

//Print Find the Wall and Back Up

//Check the sensor value in analog port 1, Is

the value <= 2700?

//Drive forward as long as the value is <=

2700 (or your determined value)

//Exit loop when value is 2700(or your

determined value) or greater

//Shut everything off

MOVE FORWARD

If Yes
If NO,
exit loop

All
Off

Is the
value <=

2700?

START

Print Find the….

Find the Wall

Professional Development Workshop
© 1993 – 2018 KIPR146Page : #

#include <kipr/botball.h>

int main()

{

printf("Find the wall\n");

while (analog(0) <= 2700)

{

motor(0,40);

motor(3,40);

}

ao();

return 0;

}

while “find the wall” Solution

Professional Development Workshop
© 1993 – 2018 KIPR147Page : #

If Yes

Pseudocode (Task Analysis)

1.//Print Find the Wall and Back Up

2.//Check the sensor value in analog port 1,

Is the value <=2700?

3.//Drive forward as long as the value is

<=2700 (or your determined value)

4.//Exit loop when value is 2700(or your

determined value) or greater

5.//Back up for 3 seconds

6.//Shut everything off

Move Backwards 3 seconds

MOVE FORWARD

If NO,
exit loop

All
Off

Is the
value <=

2700?

START

Print Find the….

ET - Find the Wall and Back Up

Professional Development Workshop
© 1993 – 2018 KIPR148Page : #

This sensor is really a short range reflectance sensor. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter
sends out IR light and the IR collector measures how much is
reflected back.

Amount of IR reflected back depends on surface texture, color and
distance to surface

This sensor is excellent for line following

Black materials typically absorb IR and reflect very little IR and white
materials typically absorb little IR and reflect most of it back
• If this sensor is mounted at a fixed height above a surface, it is easy to

distinguish a black surface from a white surface
• Connect to analog port 0 through 5

Analog Sensor:
Small Top Hat Sensors

Professional Development Workshop
© 1993 – 2018 KIPR149Page : #

1. This is an analog() sensor so plug it into any of your
analog ports 0 through 5
• Values can be between 0 and 4095
• Mount the sensor on the front of your robot so that it

is pointing to the ground and ~1/4” from the surface

Surface

Reflectance Sensor Ports

Professional Development Workshop
© 1993 – 2018 KIPR150Page : #

Mounting Sensor on DemoBot

The small top hat (reflectance) sensor works best if mounted
~1/8 to ~1/4 inch off the surface such that the distance to the
ground does not vary much/at all while the robot moves.

You may use a medium or long bolt to
secure this sensor to the second hole.

Professional Development Workshop
© 1993 – 2018 KIPR151Page : #

You can access the Sensor Values from the Sensor List on your Wallaby

• This is very helpful to get readings from all of the sensors you are
using, and then know which values/ranges to use in your code

Select Sensor List Sensor Ports Sensor Values

Reading Sensor Values
From the Sensor List

Professional Development Workshop
© 1993 – 2018 KIPR152Page : #

With the IR sensor plugged into analog port #0
• Over a white surface the value is (~200)
• Over a black surface the value is (~3000)

Your IR sensor is correctly
mounted when you have

values between ~2900-~3100
on the Black Surface

Your IR sensor is correctly
mounted when you have values

between ~175-~225 on the
White Surface.

Reading Sensor Values
From the Sensor List (Cont.)

Professional Development Workshop
© 1993 – 2018 KIPR153Page : #

1. Place your IR analog sensor in one of the analog ports (0-5).
2. After mounting your IR sensor, check value when sensor is over black on Mat

A, B or black tape

My black threshold value is ~1600

2000200

~1600

0 4095

Greater than 1600Less than or equal to 1600

Understanding the IR Values

Professional Development Workshop
© 1993 – 2018 KIPR154Page : #

If Yes

Pseudocode (Task Analysis)

1.//Prints looking for black line

2.//Check the sensor value in analog port

0, <= 1600

3.//Drive forward as long as the value is

<= 1600

4.//Exit loop when value is 1600 or greater

5.//Shut everything off

If NO,
exit loop

Looking for Black
Line

All
Off

Is the
value <=

1600?

START

MOVE FORWARD

Found Black Line

Find the Black Line

Professional Development Workshop
© 1993 – 2018 KIPR155Page : #

#include <kipr/botball.h>

int main ()

{

printf("Find the black line\n");

while (analog(0) < 1600)

{

motor(0,78);

motor(2,74);

}

ao();

return 0;

}

while “find black line” Solution

Professional Development Workshop
© 1993 – 2018 KIPR156Page : #156Page :

Motor Position Counter

Motor position counter functions

Ticks and revolutions

Professional Development Workshop
© 1993 – 2018 KIPR157Page : #

Each motor used by the DemoBot has a built-in motor position counter,
which you can use to calculate the distance traveled by the robot!

get_motor_position_counter(0) — OR — gmpc(0)

// Tells us the number of ticks the motor on port #0 has rotated.

// Note: “gmpc” is shorthand for “get_motor_position_counter”.

clear_motor_position_counter(0); — OR — cmpc(0);

// Resets the tick counter to 0 for the motor on port #0.

// Note: “cmpc” is shorthand for “clear_motor_position_counter”.

• The motor position is measured in “ticks”.

• Botball motors have approximately 1400 ticks per revolution.

• Use wheel circumference divided by 1400 to calculate distance!

Motor position counter

Motor Port #
(#0 – 3)

Motor Port #
(#0 – 3)

Similar to how a clock is divided into
60-second intervals (ticks).

Professional Development Workshop
© 1993 – 2018 KIPR158Page : #

Select Motors

You can access the Motors from the Motors and Sensors section

• This is very helpful to test your motors and see the actual
motor position counters “in action”

Seeing Counters on Wallaby

Professional Development Workshop
© 1993 – 2018 KIPR159Page : #

Seeing Counters on Wallaby (2)

Select motor port (allows you to
select the motor of your choice)

To clear (reset) the counter

Use your hand to
rotate the robot’s

wheel (plugged into
port 0) and watch the

position counter.

What happens if you
turn the wheel in the
opposite direction?

Motor Position
in “ticks”

You can also place your robot on a surface and roll it forward

to measure the # ticks from a starting position to another

location or object

Professional Development Workshop
© 1993 – 2018 KIPR160Page : #

Using motor position counter functions

int main()

{

clear_motor_position_counter(2);

while (get_motor_position_counter(2) < 1400)

{

motor(0, 50);

motor(2, 50);

}

ao();

return 0;

}

How many revolutions
will the motor rotate?

Professional Development Workshop
© 1993 – 2018 KIPR161Page : #

Description: Write a program that drives the DemoBot forward to a
specific point then stops.

Place the robot in the start box of JBC mat A and using the motors/widget screen:
1) reset the left motor counter,
2) manually push the robot forward to circle 9 on the mat and
3) visually record/remember the tick count.

Write your program to drive forward that many “ticks”

Challenge: Modify your program to back up to where it started (or
better, turn around (180 degrees) and back to where it started).

Pseudocode

Generate it!

Drive to a Specific Point

Professional Development Workshop
© 1993 – 2018 KIPR162Page : #

Solution:

Drive to a Specific Point

int main()

{

// 1. Reset motor position

counter.

// 2. Loop: Is counter < my

distance?

// 2.1. Drive forward.

// 3. Stop motors.

// 4. End the program.

}

Comments
int main()

{

int distance = 4500; // in ticks

clear_motor_position_counter(0);

while (get_motor_position_counter(0) < distance)

{

motor(0, 50);

motor(2, 50);

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR163Page : #

Reflection: What did you notice after you ran the program?

• How far did the robot travel? Was it always the same (you tested it more than
once, right)?
• Your robot most likely went FURTHER than you programmed it to (check the motors screen

after it stops to see the actual final tick count). Why? Hint: inertia

• Change your loop so that it actually goes to “distance - (actual - desired)”:

while (get_motor_position_counter(0) < distance - (4832 – distance))

• How could you modify your program to travel a specific distance in millimeters?
(Hint: Use wheel circumference (in mm) divided by 1400 to calculate number of mm
per tick!)

(Hint: Consider writing a function (later) with an argument for the distance.)

• How could you modify your program to accurately turn left or right?

Drive to a Specific Point

Professional Development Workshop
© 1993 – 2018 KIPR164Page : #

Solution (2): including backing up

Drive to a Specific Point

int main()

{

int distance = 4500; // in ticks

clear_motor_position_counter(0);

while (get_motor_position_counter(0) < distance)

{

motor(0, 50);

motor(2, 50);

}

ao();

// now back up to position/tick count 0

// note: clear counter not needed this time

while (get_motor_position_counter(0) > 0)

{

motor(0, -50);

motor(2, -50);

}

ao();

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR165Page : #

Solution (3): including turning around then going home

Drive to a Specific Point

int main()

{

int distance = 4500; // in ticks

clear_motor_position_counter(0);

while (get_motor_position_counter(0) < distance)

{

motor(0, 50);

motor(2, 50);

}

ao();

// Add code to turn around here (however you want)

ao();

// Now drive forward, back to your starting point

clear_motor_position_counter(0);

while (get_motor_position_counter(0) < distance)

{

motor(0, 50);

motor(2, 50);

}

ao();

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR166Page : #166Page :

Making a Choice

Program flow control with conditionals

if-else conditionals

if-else and Boolean operators

Using while and if-else

Professional Development Workshop
© 1993 – 2018 KIPR167Page : #

• What if we want to execute a block of code only if certain
conditions are met?

• We can do this using a conditional, which controls the flow of the
program by executing one block of code if its conditions are met
or a different block of code if its conditions are not met.

• This is similar to a loop, but differs in that it only executes once.

Program flow control with conditionals

Professional Development Workshop
© 1993 – 2018 KIPR168Page : #

Program flow control with conditionals

End

Code after conditional.

Begin

Is it
touched?

Print “Not touched!”

YES NO

Print “Touched!”

Professional Development Workshop
© 1993 – 2018 KIPR169Page : #

Program flow control with conditionals

End

Code after conditional.

Begin

Is it
touched?

Print “Not pressed!”

YES NO

Print “Pressed!”

This part of the code
is the conditional.

Professional Development Workshop
© 1993 – 2018 KIPR170Page : #

Pseudocode Comments
1. If: Is touched? // 1. If: Is touched?

1. Print “Touched!”. // 1.1. Print “Touched!”.

2. Else. // 2. Else.

1. Print “Not touched!”. // 2.1. Print “Not touched!”.

3. End the program. // 3. End the program.

Program flow control with conditionals

In the C programming language,
we accomplish this with an if-else conditional.

Professional Development Workshop
© 1993 – 2018 KIPR171Page : #

The if-else conditional checks to see if a Boolean test is true or false…
• If the test is true, then the if conditional executes the block of code that immediately follows it.

• If the test is false, then the if conditional does not execute the block of code, and the else block of
code is executed instead.

if-else conditionals

int main()

{

if (Boolean test)

{

// Code to execute ...

}

else

{

// Code to execute ...

}

// Code after conditional

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR172Page : #

Using if-else conditionals

int main()

{

if (digital(8) == 1)

{

printf("Touched!\n");

}

else

{

printf("Not touched!\n");

}

return 0;

}

What does this say?

What is this?

Professional Development Workshop
© 1993 – 2018 KIPR173Page : #

int main()

{

if (digital(8) == 1)

{

printf("Touched!\n");

}

else

{

printf("Not touched!\n");

}

return 0;

}

Using if-else conditionals

Notice: no semicolon!
(Why not?)

Professional Development Workshop
© 1993 – 2018 KIPR174Page : #

if-else conditionals

int main()

{

// Code before conditional ...

if (Boolean test)

{

// Code to execute if test is true

}

else

{

// Code to execute if test is false

}

return 0;

}

The else is
immediately below

the } brace of the
if block of code!

Professional Development Workshop
© 1993 – 2018 KIPR175Page : #

if (digital(0) == 0)

{

// Code to execute ...

}

else

{

// Code to execute ...

}

if (analog(3) < 512)

{

// Code to execute ...

}

else

{

// Code to execute ...

}

if-else examples

Professional Development Workshop
© 1993 – 2018 KIPR176Page : #

Example using while and if-else

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

printf("It's dark in here!\n");

}

else

{

printf("I see the light!\n");

}

} // loop ends when button is pressed

// touched something

return 0;

}

What do these
lines of code say?

Professional Development Workshop
© 1993 – 2018 KIPR177Page : #

Using while and if-else

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

printf("It's dark in here!\n");

}

else

{

printf("I see the light!\n");

}

} // loop ends when button is pressed

return 0;

}

Notice how the { and }
braces line up for each

block of code!

Professional Development Workshop
© 1993 – 2018 KIPR178Page : #

Pseudocode (Task Analysis)

1.//Check the a button, if it is not

pressed

2.//Drive forward as long as the value

is <=2700 (or your determined value)

3.//Drive backwards as long as the value

is >=2700 (or determined value)

4.//Exit loop when a button is pressed

5.//Shut everything off

If the a
button is not

pressed?
YES

NO

Begin

End

Return 0.

if NOif YES

Is the et
value<=2700

Drive forward
Drive

backwards

Stop motors.

ET Find the Wall and Back Up then
Drive forward

Professional Development Workshop
© 1993 – 2018 KIPR179Page : #

Mounting ET sensor

This example is a QUICK solution
(not a game winning solution).

You can use a single medium bolt.

Generally this sensor

should be mounted ~4

inches back from the

“front” of the robot (or

items it will be sensing)

to avoid the focal point

problem ever occurring.

Professional Development Workshop
© 1993 – 2018 KIPR180Page : #

#include <kipr/botball.h>

int main()

{

printf ("Drive to the wall\n");

while (digital(0) == 0) // Touch sensor not touched

{

if (analog(0) <= 2700) // Far away drive forward

{

motor(0,80);

motor(2,80);

}

if (analog(0) > 2701) // Too close back up

{

motor(0,-80);

motor(2,-80);

}

}

ao();

return 0;

}

Sample Solution

Professional Development Workshop
© 1993 – 2018 KIPR181Page : #

Description: Write a program for the KIPR Wallaby that makes the
DemoBot maintain a specified distance away from an object, and stops
when the touch sensor is touched.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Loop: Is not touched? // 1. Loop: Is not touched?

1. If: Is distance too far? // 1.1. If: Is distance too far?

1. Drive forward. // 1.1.1. Drive forward.

2. Else. // 1.2. Else.

1. If: Is distance too close? // 1.2.1. If: Is distance too close?
1. Drive reverse. // 1.2.1.1. Drive reverse.

2. Else: // 1.2.2. Else.

1. Stop motors. // 1.2.2.1. Stop motors.

2. Stop motors. // 2. Stop motors.

3. End the program. // 3. End the program.

Maintain distance

Professional Development Workshop
© 1993 – 2018 KIPR182Page : #

Solution:

Maintain distance

int main()

{

// 1. Loop: Is not touched?

// 1.1. If: Is distance to far?

// 1.1.1. Drive forward.

// 1.2. Else.

// 1.2.1. If: Is distance too close?

// 1.2.1.1. Drive reverse.

// 1.2.2. Else.

// 1.2.2.1. Stop motors.

// 2. Stop motors.

// 3. End the program.

}

Comments

int main()

{

while (digital(0) == 0)

{

if (analog(5) < 1800)

{

motor(0, 80);

motor(2, 80);

}

else

{

if (analog(5) > 2600)

{

motor(0, -75);

motor(2, -75);

}

else // sensor value is 1800-2600

{

ao();

}

}

} // end of loop

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR183Page : #

For this activity, you will need a reflectance sensor.
• This sensor is really a short-range reflectance sensor.

• There is both an infrared (IR) emitter and an IR detector inside of this sensor.

• IR emitter sends out IR light → IR detector measures how much reflects back.

• The amount of IR reflected back depends on many factors, including surface
texture, color, and distance to surface.

This sensor is excellent for line-following!
• Black materials typically absorb most IR → they reflect little IR back!

• White materials typically absorb little IR → they reflect most IR back!

• If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black line from a white surface.

Reflectance sensor for line-following

Professional Development Workshop
© 1993 – 2018 KIPR184Page : #

• Attach the sensor on the front of your robot so that it is pointing
down at the ground and is approximately 1/8” from the surface.

• A reflectance sensor is an analog sensor, so plug it into any of
analog sensor port #0 – 5. Port 0 for this example.
• Recall that analog sensor values range from 0 to 4095.

Attach your reflectance sensor

Analog Sensor
Ports # 0 – 5

Sensor Plug
Orientation

Surface

Professional Development Workshop
© 1993 – 2018 KIPR185Page : #

Mounting Sensor on DemoBot

The small top hat (reflectance) sensor works best if mounted
~1/8 to ~1/4 inch off the surface such that the distance to the
ground does not vary much/at all while the robot moves.

You may use a medium or long bolt to
secure this sensor to the second hole.

Professional Development Workshop
© 1993 – 2018 KIPR186Page : #

You can access the Sensor Values from the Sensor List on your Wallaby

• This is very helpful to get readings from all of the sensors you are
using, and then know which values/ranges to use in your code

Select Sensor List Sensor Ports Sensor Values

Reading Sensor Values
From the Sensor List

Professional Development Workshop
© 1993 – 2018 KIPR187Page : #

With the IR sensor plugged into analog port #0
• Over a white surface the value is (~200)
• Over a black surface the value is (~3000)

Reading Sensor Values
From the Sensor List (Cont.)

Your values will be
different, but the process

will be the same!

Value of ~3000
(Black Surface)

Value of ~200
(White Surface)

Professional Development Workshop
© 1993 – 2018 KIPR188Page : #

Line Following Strategy Using
the Reflectance Sensor

Line Following Strategy: while - Is the button pushed?

Follow the line’s right edge by alternating the following 2 actions:

1. if detecting dark, arc/turn right

2. if detecting light, arc left.

3. Think about a sharp turn. What will your motor function look like? Remember the
bigger the difference between the two motor powers the sharper the turn.

Professional Development Workshop
© 1993 – 2018 KIPR189Page : #

1. Place your IR analog sensor in one of the analog ports (0-5).
2. After mounting your IR sensor, check that the values are: white between

175-225 and black between 2900-3100; write down your values.
3. Find your threshold or middle value (approximately)
4. This number will be the value you need for the find the black line activity.

My black value is ~3000

3000200

My white value is ~200

Determine what your threshold or “half way”.
This example is ~1600.

1600

0 4095

Understanding the IR Values

Turn left Turn right

Professional Development Workshop
© 1993 – 2018 KIPR190Page : #

Analysis: Flowchart

Line-following

Is not
pressed?

YES
NO

Begin

End

Return 0

NOYES

Is dark
detected?

Turn/arc right. Turn/arc left.

Stop motors.

Professional Development Workshop
© 1993 – 2018 KIPR191Page : #

YES

NO

Begin

End

Return 0

If NOif YES

Is dark
detected?

Turn right if
value is > 1600

Turn left if
value is <=

1600

Stop motors.

1600
> 1600<= 1600

Turn left Turn right

(while)
Is the Button pressed? You must cover all values

0 4095

Assume all these
values are WHITE

Assume all these
values are BLACK

This is the part of

the code that tells

the Wallaby what

to do when it sees

black or white.

Understanding while and if

Professional Development Workshop
© 1993 – 2018 KIPR192Page : #

Starting with your DemoBot on one end of “JBC Mat 2” or
using a piece of dark tape, have the robot travel along the
path of the tape using the Top Hat sensor to determine the
robot path (line following).

Activity 3 (connections to the game)

Professional Development Workshop
© 1993 – 2018 KIPR193Page : #

Solution:

Line-following

int main()

{

// 1. Loop: Is not pressed?

// 1.1. If: Is dark detected?

// 1.1.1. Turn/arc left.

// 1.2. Else:

// 1.2.1. Turn/arc right.

// 2. Stop motors.

// 3. End the program.

}

Pseudocode (Comments)

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

motor(0, -10);

motor(2, 90);

}

else

{

motor(0, 90);

motor(2, -10);

}

}

ao();

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR194Page : #

Change the threshold. Increase the “arc speed”.
int main()

{

printf("Follow the line\n");

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

motor(0, -10);

motor(2, 90);

}

else

{

motor(0, 90);

motor(2, -10);

}

}

ao();

return 0;

}

The value of 1600 or the “threshold” value is ½

way between the observed values.

Remember black reflects less IR than white so

the value is lower.

Notice the Boolean operators > 1600 or <= 1600

Your value may be much lower due to lighting,

placement and turns

Also increasing the “arc speed” (by making the

difference between the forward speed and

backwards speed greater may have a significant

impact.

Tip(s)

Professional Development Workshop
© 1993 – 2018 KIPR195Page : #195Page :

Homework

Game review

Game strategy

Workshop survey

Professional Development Workshop
© 1993 – 2018 KIPR196Page : #

Review the game rules on your Team Home Base.

• We will have a 30-minute Q&A session tomorrow.

• After the workshop, ask questions about game rules in
the Game Rules Forum.
• You should regularly visit this forum.

• You will find answers to the game questions there.

Homework for tonight:
game review

Visit http://homebase.kipr.org

http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2018 KIPR197Page : #

• Break down the game into subtasks!

• Write pseudocode and/or create flowcharts!

• Start with easy points—score early and score often!

• Keep it simple and make sure it works.

• Discuss your strategy with your instructor tomorrow.

Homework for tonight:
game strategy

Professional Development Workshop
© 1993 – 2018 KIPR198Page : #

Homework for tonight:
game strategy

Think about the
Engineering Design Process!

Professional Development Workshop
© 1993 – 2018 KIPR199Page : #

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/LCYB7RY

Homework for tonight:
workshop survey

https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop
© 1993 – 2018 KIPR200Page : #

Have a good night!

Visit http://homebase.kipr.org

http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2018 KIPR201Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot straight for 14000 ticks by adjusting the right motor power so
that the position of the left motor is the same (or close) to the right.

Analysis: How can you adjust the left motor’s position?

Pseudocode Comments
1. Reset motor position counters. // 1. Reset motor position counts.

2. Loop: Is counter < 14000? // 2. Loop: check right position.

1. Move left motor at 75% power // 2.1 power left motor at 75%

2. Is right wheel behind left? // 2.2 is right behind left counters

1. True: speed up right // 2.2.1 slower: power right

motor at 100%

2. False: slow down right // 2.2.2 faster: power right

motor at 50%

3. Stop motors. // 3. Stop motors.

4. End the program. // 4. End the program.

[bonus] Drive Straight!

Professional Development Workshop
© 1993 – 2018 KIPR202Page : #

Solution:

Drive Straight!

int main()

{

// 1. clear both motor counters.

// 2. Loop: check left position

// 2.1. power left motor at 75%.

// 2.2. compare right to left counters.

// 2.2.1. slower: right motor at 100%

// 2.1.2. faster: right motor at 50%

// 3. Stop motors.

// 4. End the program.

}

Pseudocode (Comments)

int main()

{

clear_motor_position_counter(0);

cmpc(2);

while(get_motor_position_counter(2) < 14000)

{

motor(2, 75);

if(gmpc(0) < gmpc(2))

{

motor(0, 100);

}

else

{

motor(0, 50);

}

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR203Page : #

Reflection: What did you notice after you ran the program?

• Did the robot go straighter than in the previous program?

• How could you use this technique whenever you wanted to drive straight?
(Hint: Consider writing a function with an argument for the distance.)

• How could you modify your program to go straight at different speeds?

Drive Straight

Professional Development Workshop
© 1993 – 2018 KIPR204Page : #204Page :

Botball 2018
Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)

with significant contributions from KIPR staff

and the Botball Instructors Summit participants

While waiting, work on yesterday’s exercises or build the Create DemoBot!

v2018-01-12 r1

Welcome back!

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop
© 1993 – 2018 KIPR205Page : #

Day 1 Day 2

• Botball Game Review

• Tournament Code Template

• Fun with Functions

• Repetition, Repetition: Counting

• Moving the iRobot Create: Part 1

• Moving the iRobot Create: Part 2

• Color Camera

• iRobot Create Sensors

• Logical Operators

• Resources and Support

Workshop Schedule – Day 2

• Botball Overview

• Getting started with the KIPR Software Suite

• Explaining the “Hello, World!” C Program

• Designing Your Own Program

• Moving the DemoBot with Motors

• Moving the DemoBot Servos

• Making Smarter Robots with Sensors

• Repetition, Repetition: Reacting

• Motor Position Counters

• Making a Choice

• Line-following

• Homework

Professional Development Workshop
© 1993 – 2018 KIPR206Page : #206Page :

Botball Game Review

Game Q&A

Construction, documentation, and changes

shut_down_in() function

wait_for_light() function

Professional Development Workshop
© 1993 – 2018 KIPR207Page : #

NOW!
You have 30 minutes…

Botball Game Q&A starts…

Professional Development Workshop
© 1993 – 2018 KIPR208Page : #

Botball game board

Professional Development Workshop
© 1993 – 2018 KIPR209Page : #

Note: our competition tables are built
to specifications with allowable variance.

• Do NOT engineer robots that are so precise that a 1/4” difference
in a measurement means they are not successful.
• For example: the specified height of the tram assembly is set to be 13”

above the game surface, if the actual height was 13 ¼” off the surface, an
effector with too low of a tolerance may fail to do it’s job.

• Review construction documents (like the ones on the Home
Base!) to get building ideas.

• Search the internet for robots and structures to get building ideas.

• Test structure robustness before the tournament!

Ideas on construction

Professional Development Workshop
© 1993 – 2018 KIPR210Page : #

What?
• Botball Online Project Documentation (BOPD)

• Rubrics and examples are on the Team Home Base

• NO NAMES OR SCHOOL NAMES ALLOWED ON SUBMISSIONS

When?
• 3 document submissions during design and build portion

• 1 onsite presentation (8 minute) at regional tournament

Why?
• To reinforce the Engineering Design Process

• Points earned in Documentation factor into the overall tournament scores!

See BOPD Handbook on the Team Home Base
for more information (rubrics and exemplars).

Documentation

Professional Development Workshop
© 1993 – 2018 KIPR211Page : #

• See the Team Homebase for a document covering all
changes made in regards to Hardware, Rules, the
Wallaby, Software, and Documentation.

• Kit Parts – ~11 new pieces (axle related), newer servos
(and related pieces), new igus® set, new sensor mounts

• Game Rules – paper clips, pennies (for counterweight
purposes), challenge rule updates, external
communication rule updates, etc.

• Resources – other updates can be found online.

Changes this season

Professional Development Workshop
© 1993 – 2018 KIPR212Page : #

• The light sensor is a cool way to automatically start your robot
and critical for Botball robots at the beginning of the game.

• The wait_for_light() function allows your program to run
when your robot senses a light.
• Note: It has a built-in calibration routine that will come up on the screen

(a step-by-step guide for this calibration routine is on a following slide).

• The light sensor senses infrared light, so light must be emitted
from an incandescent light, not an LED light.
• For our activities, you can use a flashlight.

• The more light (infrared) detected, the lower the reported value.

Starting your programs with a light

Professional Development Workshop
© 1993 – 2018 KIPR213Page : #

wait_for_light(3);

// Waits for the light on port #3 before going to the next line.

Sensor waiting functions

Professional Development Workshop
© 1993 – 2018 KIPR214Page : #

Using wait_for_light

int main()

{

wait_for_light(3);

printf("I see the light!\n");

return 0;

}

What is this?

Professional Development Workshop
© 1993 – 2018 KIPR215Page : #

Plug in your light sensor
(and get a flashlight (or top-hat sensor)!)

Digital Sensor
Ports # 0 – 9

Analog Sensor
Ports # 0-5

Sensor Plug
Orientation

Plug your Light

Sensor into Analog

Port #3.

Professional Development Workshop
© 1993 – 2018 KIPR216Page : #

Use the sensor list

Professional Development Workshop
© 1993 – 2018 KIPR217Page : #

Use the sensor graph

Professional Development Workshop
© 1993 – 2018 KIPR218Page : #

Description: Write a program for the KIPR Wallaby that waits for a
light to come on, drives the DemoBot forward for 3 seconds, and
then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Wait for light. // 1. Wait for light.

2. Drive forward. // 2. Drive forward.

3. Wait for 3 seconds. // 3. Wait for 3 seconds.

4. Stop motors. // 4. Stop motors.

5. End the program. // 5. End the program.

Starting with a light

Flowchart

Drive forward.

Wait for 3 seconds.

Stop motors.

End

Return 0

Begin

Wait for light.

Professional Development Workshop
© 1993 – 2018 KIPR219Page : #

When you use the wait_for_light() function in your program,
the following calibration routine will run automatically.

wait_for_light calibration routine

When the light is on (low value),
press the “Light is On” button.

When the light is off (high value),
press the “Light is Off” button. You will get a “Good Calibration!”

message and moving red dot on
green bar when done correctly.

You will get a “BAD CALIBRATION”
message when not done correctly,
and you will need to run through

the routine again.

Note: For Botball, wait_for_light() should be
one of the first functions called in your program.

Professional Development Workshop
© 1993 – 2018 KIPR220Page : #

Solution:

Execution: Compile and run your program on the KIPR Wallaby.

Starting with a light

int main()

{

// 1. Wait for light.

// 2. Drive forward.

// 3. Wait for 3 seconds.

// 4. Stop motors.

// 5. End the program.

}

Comments
int main()

{

wait_for_light(3);

motor(0, 100); //forward

motor(2, 100);

msleep(3000);

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR221Page : #

Solution: Use a function!

Execution: Compile and run your program on the KIPR Wallaby.

Starting with a light

int main()

{

// 1. Wait for light.

// 2. Drive forward.

// 3. Wait for 3 seconds.

// 4. Stop motors.

// 5. End the program.

}

Comments

void drive_forward();

int main()

{

wait_for_light(3);

drive_forward();

msleep(3000);

ao();

return 0;

}

void drive_forward()

{

motor(0, 100);

motor(2, 100);

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR222Page : #

• How does the wait_for_light() function work?

• We can use a loop, which controls the flow of the program by
repeating a block of code until a sensor reaches a particular value.
• The number of repetitions is unknown

• The number of repetitions depends on the conditions sensed by the robot

Remember loops?

Professional Development Workshop
© 1993 – 2018 KIPR223Page : #

These two functions should be
two of the first lines of code in

your Botball tournament program!

wait_for_light(0);

// Waits for the light on port #0 before going to the next line.

shut_down_in(119);

// Shuts down all motors after 119 seconds (just less than 2 minutes).

• This function call should come immediately after the wait_for_light() in your code.

• If you do not have this function in your code, your robot may not automatically turn off
its motors at the end of the Botball round and you will be disqualified!

Botball tournament functions

Professional Development Workshop
© 1993 – 2018 KIPR224Page : #

int main() // for your Create robot

{

create_connect();

wait_for_light(0); // change the port number to match the port you use

shut_down_in(119); // shut off the motors and stop the robot after 119 seconds

// Your code

create_disconnect();

return 0;

}

int main() // for not your Create robot

{

wait_for_light(0); // change the port number to match the port you use

shut_down_in(119); // shut off the motors and stop the robot after 119 seconds

// Your code

return 0;

}

Tournament templates

Professional Development Workshop
© 1993 – 2018 KIPR225Page : #

Description: Write a program for the KIPR Wallaby that waits for a
light to come on, shuts down the program in 5 seconds, drives the
DemoBot forward until it detects a touch, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Wait for light. // 1. Wait for light.

2. Shut down in 5 seconds. // 2. Shut down in 5 seconds.

3. Drive forward. // 3. Drive forward.

4. Wait for touch. // 4. Wait for touch.

5. Stop motors. // 5. Stop motors.

6. End the program. // 6. End the program.

Running a Botball tournament program

Professional Development Workshop
© 1993 – 2018 KIPR226Page : #

Analysis:

Running a Botball tournament program

Flowchart

START

Shut down in 5 seconds.

Drive forward.

Wait for touch.

STOP

Return 0

Stop motors.

Wait for light.

Professional Development Workshop
© 1993 – 2018 KIPR227Page : #

Solution:

Execution: Compile and run your program on the KIPR Wallaby.

Running a Botball tournament program

int main()

{

// 1. Wait for light.

// 2. Shut down in 5 seconds.

// 3. Drive forward.

// 4. Wait for touch.

// 5. Stop motors.

// 6. End the program.

}

Pseudocode (Comments)

int main()

{

wait_for_light(0);

shut_down_in(5);

while (digital(0) == 0)

{

motor(0, 100);

motor(2, 100);

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR228Page : #

When you use the wait_for_light() function in your program,
the following calibration routine will run automatically.

wait_for_light() calibration routine

When the light is on (low value),
press the “Light is On” button.

When the light is off (high value),
press the “Light is Off” button.

You will get a “Good Calibration!”
message and moving red dot on
green bar when done correctly.

You will get a “BAD CALIBRATION”
message when not done correctly,
and you will need to run through

the routine again.

Note: For Botball, wait_for_light() should be
one of the first functions called in your program.

Professional Development Workshop
© 1993 – 2018 KIPR229Page : #

Reflection:

• What happens if the touch sensor is pressed in less than 5 seconds after
starting the program?

• What happens if the touch sensor is not pressed in less than 5 seconds after
starting the program?

• What is the best way to guarantee that your program will start with the light in
a Botball tournament round? (Answer: wait_for_light(0))

• What is the best way to guarantee that your program will stop within 120
seconds in a Botball tournament round? (Answer: shut_down_in(119))

Running a Botball tournament program

Use these functions in your Botball tournament code!

Professional Development Workshop
© 1993 – 2018 KIPR230Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot along a path in the shape of a square.
• Start with having the robot make a 90° turn.

• Then add in forward movements to have the robot drive along a square path.
Remember the direction your robot is taking.

Draw a square

Professional Development Workshop
© 1993 – 2018 KIPR231Page : #

Analysis: What is the program supposed to do?

Pseudocode Comments
1.Drive forward. // 1. Drive forward.

2.Turn right 90°. // 2. Turn right 90-degrees.

3.Drive forward. // 3. Drive forward.

4.Turn right 90°. // 4. Turn right 90-degrees.

5.Drive forward. // 5. Drive forward.

6.Turn right 90°. // 6. Turn right 90-degrees.

7.Drive forward. // 7. Drive forward.

8.Turn right 90°. // 8. Turn right 90-degrees.

9.Stop motors. // 9. Stop motors.

10.End the program. // 10. End the program.

Draw a square

End

Begin

Drive forward.

Return 0

Turn right 90°

Drive forward.

Turn right 90°

Drive forward.

Turn right 90°

Drive forward.

Turn right 90°

Stop motors.

Flowchart

Professional Development Workshop
© 1993 – 2018 KIPR232Page : #

int main()

{

// 1. Drive forward.

motor(0, 100);

motor(2, 100);

msleep(4000);

// 2. Turn right 90-degrees.

motor(0, 100);

motor(2, -100);

msleep(1500);

// 3. Drive forward.

motor(0, 100);

motor(2, 100);

msleep(4000);

// 4. Turn right 90-degrees.

motor(0, 100);

motor(2, -100);

msleep(1500);

// 5. Drive forward.

motor(0, 100);

motor(2, 100);

msleep(4000);

// 6. Turn right 90-degrees.

motor(0, 100);

motor(2, -100);

msleep(1500);

// 7. Drive forward.

motor(0, 100);

motor(2, 100);

msleep(4000);

// 8. Turn right 90-degrees.

motor(0, 100);

motor(2, -100);

msleep(1500);

ao(); // 9. Stop motors.

return 0; // 10. End the program.

} // end main

Solution:

Here is some code that uses the motor()
and msleep() functions to drive the robot
in a square.

Note: this is just one of many solutions.

Draw a square

Professional Development Workshop
© 1993 – 2018 KIPR233Page : #233Page :

Fun with Functions

Writing your own functions

Function prototypes, definitions, and calls

Professional Development Workshop
© 1993 – 2018 KIPR234Page : #

int main()

{

// 1. Drive forward.

motor(0, 100);

motor(2, 100);

msleep(4000);

// 2. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// 3. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 4. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// 5. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 6. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// 7. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 8. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

ao(); // 9. Stop motors.

return 0; // 10. End the program.

} // end main

Reflection:
Notice there are many repeated steps.
For example:

// Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

… is repeated 4 times in this program!

• Also, Turn right 90-degrees.

You will quickly learn to use copy-and-
paste over and over again, but there is a
better and easier way…

Learning to write your own functions
allows you to reuse code easily!

Draw a square
Drive forward.

Turn right.

Drive forward.

Turn right.

Drive forward.

Turn right.

Drive forward.

Turn right.

Professional Development Workshop
© 1993 – 2018 KIPR235Page : #

• Remember: a function is like a recipe.

• When you call (use) the function, the computer (or robot) does all
of the actions listed in the “recipe” in the order they are listed.

• Functions are very helpful if you take some actions multiple times:
• driving straight forward → drive_forward();

• making a 90° left turn → turn_left_90();

• making a 180° turn → turn_around();

• lifting an arm up → lift_arm();

• closing a claw → close_claw();

• Functions often make it easier to (1) read the main function, and
(2) change distance, turning, timing, or other values if necessary.

Writing your own functions

We made these up…
and that’s the point!

You can write your
own functions to do
whatever you want!

Professional Development Workshop
© 1993 – 2018 KIPR236Page : #

• There are three components to a function:
1. Function prototype: a promise to the computer that the function is

defined somewhere (an entry in the table of contents of a recipe book)

2. Function definition: the list of actions to be executed (the recipe)

3. Function call: using the function (recipe) in your program

Writing your own functions

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

} // end main

void drive_forward() // function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

1

3

2

void is a data

type, we will

talk about data

types later

Professional Development Workshop
© 1993 – 2018 KIPR237Page : #

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

} // end main

void drive_forward() // function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

Writing your own functions

Function prototypes
go above main.

Function definitions
go below main.

Function calls
go inside main
(or inside other

functions).

Use void in your

function prototype if

you are

commanding the

robot to do

something.

Professional Development Workshop
© 1993 – 2018 KIPR238Page : #

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

} // end main

void drive_forward() // function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

Writing your own functions

The function prototype and the function definition look the same except for one thing…

Notice: no semicolon!
(Why not?)

prototype

definition

Professional Development Workshop
© 1993 – 2018 KIPR239Page : #

Writing your own functions

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

} // end main

void drive_forward() // function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

The function prototype is a
promise to the computer…

… that you will tell the
computer what to do in the

function definition.

Neither the function prototype nor the function definition tell the
computer when to use the function. That is the job of the function call…

Professional Development Workshop
© 1993 – 2018 KIPR240Page : #

Writing your own functions

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

} // end main

void drive_forward() // function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

The function call makes the
computer jump down to the

function definition.

The program then executes
all of the lines of code in the

block of code.

Professional Development Workshop
© 1993 – 2018 KIPR241Page : #

Writing your own functions

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

} // end main

void drive_forward() // function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

After the computer executes all of the lines of code in
the function definition, the program jumps back up to
the line of code after the function call and continues.

This is the end } of the
function definition.

Professional Development Workshop
© 1993 – 2018 KIPR242Page : #

Writing your own functions

// function prototypes

void drive_forward();

void turn_right();

int main()

{

drive_forward(); // drive_forward function call

turn_right(); // turn_right function call

return 0;

} // end main

void drive_forward() // drive_forward function definition

{

motor(0, 90);

motor(2, 90);

msleep(4000);

ao();

} // end drive_forward

void turn_right() // turn_right function definition

{

motor(0, 70);

motor(2, -70);

msleep(1500);

ao();

} // end turn_right

Professional Development Workshop
© 1993 – 2018 KIPR243Page : #

Description: Write a program for the KIPR Wallaby that drives the
DemoBot along a path in the shape of a square using functions.
• Hint: modify your old square-drawing program to use your own functions.

• Break the task down into common subtasks → these become your functions!

Draw a square using functions

Professional Development Workshop
© 1993 – 2018 KIPR244Page : #

int main()

{

// 1. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 2. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// 3. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 4. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// 5. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 6. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// 7. Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// 8. Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

ao(); // 9. Stop motors.

return 0; // 10. End the program.

} // end main

// Function prototype for

// drive_forward_and_turn_right.

void drive_forward_and_turn_right();

// Function definition for main.

int main()

{

// Four function calls for

// drive_forward_and_turn_right.

drive_forward_and_turn_right();

drive_forward_and_turn_right();

drive_forward_and_turn_right();

drive_forward_and_turn_right();

return 0;

} // end main

// Function definition for

// drive_forward_and_turn_right.

void drive_forward_and_turn_right()

{

// Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// Stop motors.

ao();

} // end drive_forward_and_turn_right

Code without your functions

main is shorter and
easier to read.

Code with your functions

Professional Development Workshop
© 1993 – 2018 KIPR245Page : #

Draw a square

Reflection:
1. It makes the main function easier to

read and understand, and spotting
mistakes is much easier.

2. You only have to change a value one
time in the function definition for it
to affect the entire program.
• For example, to draw a smaller square,

simply change the msleep() value in
your drive_forward_and_turn()
function definition from 4000 to 2000.

// Function prototype for

// drive_forward_and_turn_right.

void drive_forward_and_turn_right();

// Function definition for main.

int main()

{

// Four function calls for

// drive_forward_and_turn_right.

drive_forward_and_turn_right();

drive_forward_and_turn_right();

drive_forward_and_turn_right();

drive_forward_and_turn_right();

return 0;

} // end main

// Function definition for

// drive_forward_and_turn_right.

void drive_forward_and_turn_right()

{

// Drive forward.

motor(0, 90);

motor(2, 90);

msleep(4000);

// Turn right 90-degrees.

motor(0, 70);

motor(2, -70);

msleep(1500);

// Stop motors.

ao();

} // end drive_forward_and_turn_right

Professional Development Workshop
© 1993 – 2018 KIPR246Page : #

Create a function to wave your servo arm.

Advanced waving the servo arm

void wave()

{

// 1. Enable servos.

// 2. Move servo to YOUR limit.

// 3. Wait for 3 seconds.

// 4. Move servo to YOUR other limit.

// 5. Wait for 3 seconds.

// 6. Disable servos.

}

Comments

Professional Development Workshop
© 1993 – 2018 KIPR247Page : #

Solution:

Execution: Compile and run your program on the KIPR Wallaby.

Move the Servo using functions

void wave()

{

// 1. Enable servos.

// 2. Move servo to YOUR limit.

// 3. Wait for 3 seconds.

// 4. Move servo to YOUR other limit.

// 5. Wait for 3 seconds.

// 6. Disable servos.

}

Comments

void wave();

int main()

{

wave(); // function call

return 0;

} // end main

void wave()

{

// 1. Enable servos.

enable_servos();

// 2. Move servo to YOUR limit.

set_servo_position(0, 1400);

// 3. Wait for 3 seconds.

msleep(3000);

// 4. Move servo to YOUR other limit.

set_servo_position(0, 1024);

// 5. Wait for 3 seconds.

msleep(3000);

// 6. Disable servos.

disable_servos();

}

Source Code

Use YOUR
servo limits!

Professional Development Workshop
© 1993 – 2018 KIPR248Page : #

Solution: (using two functions)

Line-following with functions

int main()

{

// 1. Loop: Is not pressed?

// 1.1. If: Is dark detected?

// 1.1.1. Turn/arc right.

// 1.2. Else:

// 1.2.1. Turn/arc left.

// 2. Stop motors.

// 3. End the program.

}

Pseudocode (Comments)

void turn_left();

void turn_right();

int main()

{

while (digital(0) == 0)

{

if (analog(0) > 1600)

{

turn_right();

}

else

{

turn_left();

}

}

ao();

return 0;

}

void turn_left()

{

motor(0, 10);

motor(2, 80); // Turn/arc left.

}

void turn_right()

{

motor(0, 80);

motor(2, 10); // Turn/arc right.

}

Professional Development Workshop
© 1993 – 2018 KIPR249Page : #249Page :

More Variables and Functions with
Arguments

Data types

Creating and setting a variable

Variable arithmetic

Functions with arguments and return values

Professional Development Workshop
© 1993 – 2018 KIPR250Page : #

You can set the value of an int variable to any integer you choose
and change it when you need in the code.

Note that a single equal sign (=) means is assigned (sometimes it is
called the “assignment operator”).

int counter;

int ticks;

So counter = 3; means “counter is assigned 3”.

And ticks = 2000 * (1400.0 / circumferenceMM); means
“ticks is assigned 2000 times 1400.0 divided by circumference (in
mm)” (used to calculate how many ticks needed to travel ~2meters).

Variables (quick recap)

3counter

??ticks

“visualize”

the variable

storage

spaces

Professional Development Workshop
© 1993 – 2018 KIPR253Page : #

Remember This?

void drive_forward(); // function prototype

int main()

{

drive_forward(); // function call

return 0;

}

void drive_forward() // function definition

{

motor(0, 80);

motor(2, 80);

msleep(4000);

ao();

}

When you
call this

function,
how long
will it run

for?

What if you don’t want it to run for this long each time?

Professional Development Workshop
© 1993 – 2018 KIPR254Page : #

• Function arguments: values you will set when you call the
function

Functions with arguments

void drive_forward(int milliseconds); // function prototype

int main()

{

drive_forward(4000); // function call

return 0;

} // end main

void drive_forward(int milliseconds) // function definition

{

motor(0, 80);

motor(2, 80);

msleep(milliseconds);

ao();

}

Professional Development Workshop
© 1993 – 2018 KIPR255Page : #

Writing your own functions
with arguments

void drive_forward(int milliseconds); // function prototype

int main()

{

drive_forward(4000); // function call

return 0;

} // end main

void drive_forward(int milliseconds) // function definition

{

motor(0, 80);

motor(2, 80);

msleep(milliseconds);

ao();

} // end drive_forward

The value in the function call
sets the value of the argument…

… which is then used in the
function definition.

Professional Development Workshop
© 1993 – 2018 KIPR256Page : #

void drive_forward(int milliseconds); // function prototype

int main()

{

drive_forward(4000); // function call

return 0;

} // end main

void drive_forward(int milliseconds) // function definition

{

motor(0, 80);

motor(2, 80);

msleep(milliseconds);

ao();

} // end drive_forward

Writing your own functions
with arguments

The function prototype and the function definition look the same except for one thing…

Notice: no semicolon!
(Why not?)

Professional Development Workshop
© 1993 – 2018 KIPR257Page : #

void drive_forward(int power, int milliseconds); // function prototype

int main()

{

drive_forward(80, 4000); // function call

return 0;

}

void drive_forward(int power, int milliseconds) // function definition

{

motor(0, power);

motor(2, power);

msleep(milliseconds);

ao();

}

Writing your own functions
with multiple arguments

The value in the function call
sets the value of the argument…

… which is then used in the
function definition.

Professional Development Workshop
© 1993 – 2018 KIPR258Page : #

void drive_forward(int power, int milliseconds); // function prototype

void turn_right(int degrees); // function prototype

int main()

{

drive_forward(80, 4000);

turn_right(90); // not defined yet but trust that it works

drive_forward(75, 2000);

return 0;

}

void drive_forward(int power, int milliseconds) // function definition

{

motor(0, power);

motor(2, power);

msleep(milliseconds);

ao();

}

Arguments can change over time

The values in the SECOND function call
are now 75 and 2000 respectively

… which is then used in the
function definition.

Professional Development Workshop
© 1993 – 2018 KIPR259Page : #259Page :

Repetition, Repetition, Repetition

Program flow control with loops

while loops for counting

while and Boolean operators

Professional Development Workshop
© 1993 – 2018 KIPR260Page : #

Suppose your task is to wave the robot arm 10 times…

Pseudocode Comments

1. Wave Arm. // 1. Wave Arm.

2. Wave Arm. // 2. Wave Arm.

3. Wave Arm. // 3. Wave Arm.

4. Wave Arm. // 4. Wave Arm.

5. Wave Arm. // 5. Wave Arm.

6. Wave Arm. // 6. Wave Arm.

7. Wave Arm. // 7. Wave Arm.

8. Wave Arm. // 8. Wave Arm.

9. Wave Arm. // 9. Wave Arm.

10. Wave Arm. // 10. Wave Arm.

11. End the program. // 11. End the program.

Program flow control with loops

End

Begin

Wave Arm.

Return 0.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Professional Development Workshop
© 1993 – 2018 KIPR261Page : #

Now, suppose your objective is to wave the arm 50 times…

… or 100 times…

… or 1,000 times…

… or 12,345 times…

You could copy-and-paste lines of code, but it would take a very long time…

There has got to be a better way!

(And there is!)

Program flow control with loops

Professional Development Workshop
© 1993 – 2018 KIPR262Page : #

• What if we want to repeat the same block of code many times?

• We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Program flow control with loops

Professional Development Workshop
© 1993 – 2018 KIPR263Page : #

Program flow control with loops

— VS —

End

Begin

Set “counter” to 0.

Wave Arm.

Add 1 to “counter”.

Is
“counter”

< 10?

Return 0.

YES
NO

End

Begin

Wave Arm.

Return 0.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Professional Development Workshop
© 1993 – 2018 KIPR264Page : #

Program flow control with loops

— VS —

End

Begin

Set “counter” to 0.

Wave Arm.

Add 1 to “counter”.

Is
“counter”

< 10?

Return 0.

YES
NO

This part of the code
is the loop.

End

Begin

Wave Arm.

Return 0.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Wave Arm.

Professional Development Workshop
© 1993 – 2018 KIPR265Page : #

The while loop checks to see if a Boolean test is true or false…
• If the test is true, then the while loop continues to execute the block of code that immediately

follows it.

• If the test is false, then the while loop finishes, and the line of code after the block of code is
executed.

while loops

int main()

{

while (Boolean test)

{

// Code to repeat ...

}

.

return 0;

}

Professional Development Workshop
© 1993 – 2018 KIPR266Page : #

The while loop checks to see if a Boolean test is true or false…
• If the test is true, then the while loop continues to execute the block of code that immediately

follows it.

• If the test is false, then the while loop finishes, and the line of code after the block of code is
executed.

while loops

int main()

{

while (Boolean test)

{

// Code to repeat ...

}

return 0;

}

Begin

End

Block Header
(no semicolon!)

Professional Development Workshop
© 1993 – 2018 KIPR267Page : #

The Boolean test in a while loop is asking a question:

Is this statement true or false?

• The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:
•== Equal to (NOTE: two equal signs, not one which is an assignment!)

•!= Not equal to

•< Less than

•> Greater than

•<= Less than or equal to

•>= Greater than or equal to

while and Boolean operators

Professional Development Workshop
© 1993 – 2018 KIPR268Page : #

Boolean English Question True Example False Example

A == B Is A equal to B? 5 == 5 5 == 4

A != B Is A not equal to B? 5 != 4 5 != 5

A < B Is A less than B? 4 < 5 5 < 4

A > B Is A greater than B? 5 > 4 4 > 5

A <= B Is A less than or equal to B?
4 <= 5

5 <= 5
6 <= 5

A >= B Is A greater than or equal to B?
5 >= 4

5 >= 5
5 >= 6

Boolean operators cheat sheet

Professional Development Workshop
© 1993 – 2018 KIPR269Page : #

• Rember that variables can be modified over time, so how could
this be useful?
• They can be used to help remember (or keep count) for us how many

times something has been done (which can be useful for some loops).

The “trick” to understanding this is that the RIGHT side is done first
which means counter “is assigned” counter (currently 0) plus one
(or 0 + 1)

Variables as Counters

int counter;

counter = 0;

// some code later

counter = counter + 1; // adding one to the counter

0counter

1counter

Professional Development Workshop
© 1993 – 2018 KIPR270Page : #

Description: Write a program for the KIPR Wallaby that drives the DemoBot
along a path in the shape of a square using loops.
• Hint: modify your old square-drawing program to use a while loop.

• Bonus: use a while loop and functions!

Analysis: What is the program supposed to do?

Pseudocode
Comments

1.Set Variable “side_counter” to 0. // 1. Set Variable “side_counter” to 0.

2.Loop: Is “side_counter” < 4? // 2. Loop: Is “side_counter” < 4?

1. Drive forward. // 2.1. Drive forward.

2. Turn right 90°. // 2.2. Turn right 90-degrees.

3. Add 1 to “side_counter”. // 2.3. Add 1 to “side_counter”.

3.Stop motors. // 3. Stop motors.

4.End the program. // 4. End the program.

Draw a square using a loop

Professional Development Workshop
© 1993 – 2018 KIPR271Page : #

Analysis: Flowchart

Draw a square using a loop

Set “side_counter” to 0.

Drive forward.

Stop motors.

YESNO

Begin

End

Add 1 to “side_counter”.

Turn right 90°.

Return 0

Boolean Test
“side_counter” is < 4?

Boolean Test

Professional Development Workshop
© 1993 – 2018 KIPR272Page : #

Solution:

Draw a square using a loop

int main()

{

// 1. Set “side_counter” to 4.

// 2. Loop: Is “side_counter” < 4?

// 2.1. Drive forward.

// 2.2. Turn right 90-degrees.

// 2.3. Add 1 to “side_counter”.

// 3. Stop motors.

// 4. End the program.

}

Comments
int main()

{

int side_counter = 0;

while (side_counter < 4)

{

motor(0, 90);

motor(2, 90);

msleep(4000); // forward

motor(0, 70);

motor(2, -70);

msleep(1500); //right turn

side_counter = side_counter + 1;

}

ao();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR273Page : #

Solution: Use a function!

Draw a square using a loop

int main()

{

// 1. Set “side_counter” to 4.

// 2. Loop: Is “side_counter” < 4?

// 2.1. Drive forward.

// 2.2. Turn right 90-degrees.

// 2.3. Add 1 to “side_counter”.

// 3. Stop motors.

// 4. End the program.

}

Comments

void drive_forward_and_turn_right();

int main()

{

int side_counter = 0 ;

while (side_counter < 4)

{

drive_forward_and_turn_right();

side_counter = side_counter + 1;

}

ao();

return 0;

}

void drive_forward_and_turn_right()

{

motor(0, 90);

motor(2, 90);

msleep(4000);

motor(0, 70);

motor(2, -70);

msleep(1500);

ao();

}

Professional Development Workshop
© 1993 – 2018 KIPR274Page : #

Description: Write a program for the KIPR Wallaby that moves the DemoBot
servo arm from position 200 to 1800 in increments of 100.
• Remember to enable the servos at the beginning of your program, and disable the

servos at the end of your program!

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Set counter to 200. // 1. Set counter to 200

2. Set servo position to counter. // 2. Set servo position to counter

3. Enable servos. // 3. Enable servos.

4. Loop: Is counter < 1800? // 4. Loop: Is counter < 1800?

1. Wait for 100 milliseconds. // 4.1. Wait for 100 milliseconds.

2. Add 100 to counter. // 4.2. Add 100 to servo position.

3. Set servo position to counter. // 4.3 Set servo position to counter.

5. Disable servos. // 5. Disable servos.

6. End the program. // 6. End the program.

Move the servo arm using a loop

Professional Development Workshop
© 1993 – 2018 KIPR275Page : #

Analysis: Flowchart

Move the servo arm using a loop

Set counter to 200.

Is counter <
1800

Disable servos.

YESNO

Begin

End

Wait for 100 milliseconds.

Return 0

Enable servos.

Set servo position to counter.

Set servo position to counter.

Add 100 to counter.

Professional Development Workshop
© 1993 – 2018 KIPR276Page : #

Solution:

Move the servo arm using a loop

int main()

{

// 1. Set counter to 200.

// 2. Set servo position to counter.

// 3. Enable servos.

// 4. Loop: Is counter < 1800?

// 4.1. Wait for 0.1 seconds.

// 4.2. Add 100 to counter.

// 4.3. Set servo position to counter.

// 5. Disable servos.

// 6. End the program.

}

Comments

int main()

{

int counter = 200;

set_servo_position(0, counter);

enable_servos();

while (counter < 1800)

{

msleep(100);

counter = counter + 100;

set_servo_position(0, counter);

}

msleep(100);

disable_servos();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR277Page : #277Page :

Moving the iRobot Create: Part 1

Setting up the Create

The Create and the KIPR Wallaby

Create functions

Professional Development Workshop
© 1993 – 2018 KIPR278Page : #

• For charging the Create, use only the power supply
which came with your Create.
• Damage to the Create from using the wrong charger is easily

detected and will void your warranty!

• The Create power pack is a nickel metal hydride
battery, so the rules for charging a battery for any
electronic device apply.
• Only an adult should charge the unit.

• Do NOT leave the unit unattended while charging.

• Charge in a cool, open area away from flammable materials.

Charging the Create

Professional Development Workshop
© 1993 – 2018 KIPR279Page : #

•The yellow battery tab pulls out of place on the bottom of the Create.

•The battery will be enabled as soon as the tab is removed.

Enabling the battery of the Create

Create

Underside

Professional Development Workshop
© 1993 – 2018 KIPR280Page : #

• Remove the green protective tray from the top of the Create.

• Use only the Create charger provided with your kit.

• The Create docks onto the charging station.

Uncovering and Charging the Create

Remove this Serial

Port

Professional Development Workshop
© 1993 – 2018 KIPR281Page : #

Build the Create DemoBot

Mounting the Robotics Controller onto
the Create

Professional Development Workshop
© 1993 – 2018 KIPR282Page : #

All programs used with the Create
MUST start with

create_connect()

and end with
create_disconnect()

Create connect/disconnect functions

Begin

Connect to Create

Drive forward 2 seconds.

Turn off motors

End

Disconnect from Create

Flowchart

Professional Development Workshop
© 1993 – 2018 KIPR283Page : #

Note: Create commands run until a different motor command is received.

create_drive_direct(left speed, right speed);

Examples:
create_drive_direct(100, 100); // Moves forward at 100 mm/sec.

create_drive_direct(-200, 200); // Create will turn left.

create_drive_direct(150, -150); // Create will turn right.

create_stop(); // Turns off the Create motors.

WARNING: the maximum speed for the Create motors is 500 mm/second = 0.5 m/second.
It can jump off a table in less than one second!

Use something like 200 for the speed (moderate speed) until teams get the hang of this.

Create motor functions

Left Motor Speed
(in mm/second)

Right Motor Speed
(in mm/second)

Professional Development Workshop
© 1993 – 2018 KIPR284Page : #

Using Create functions

int main()

{

create_connect();

create_drive_direct(200, 200);

msleep(5000);

create_stop();

create_disconnect();

return 0;

}

How far will the
Create drive?

Professional Development Workshop
© 1993 – 2018 KIPR285Page : #

Description: Write a program for the KIPR Wallaby that drives the
Create forward at 100 mm/second for four seconds, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connect to Create. // 1. Connect to Create.

2. Drive forward at 100 mm/sec. // 2. Drive forward at 100 mm/sec.

3. Wait for 4 seconds. // 3. Wait for 4 seconds.

4. Stop motors. // 4. Stop motors.

5. Disconnect from Create. // 5. Disconnect from Create.

6. End the program. // 6. End the program.

Moving the Create

Professional Development Workshop
© 1993 – 2018 KIPR286Page : #

Analysis:

Moving the Create

Flowchart

Begin

Connect to Create.

Drive forward at 100 mm/sec.

Wait for 4 seconds.

End

Return 0

Stop motors.

Disconnect from Create.

Professional Development Workshop
© 1993 – 2018 KIPR287Page : #

Solution:

Execution: Compile and run your program on the KIPR Wallaby.

Moving the Create

int main()

{

// 1. Connect to Create.

// 2. Drive forward at 100 mm/sec.

// 3. Wait for 4 seconds.

// 4. Stop motors.

// 5. Disconnect from Create.

}

Comments
int main()

{

create_connect();

create_drive_direct(100, 100);

msleep(4000);

create_stop();

create_disconnect();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR288Page : #

Description: Write a program for the KIPR Wallaby that drives the
Create forward until it touches an object (or gets as close as it can),
and then returns to its starting location (home).
• Move the object to various distances.

Touch an object and “go home”

Object
Starting line

Object
Starting line

Object
Starting line

iRobot

Create

iRobot

Create iRobot

Create

Professional Development Workshop
© 1993 – 2018 KIPR289Page : #289Page :

Moving the iRobot Create: Part 2

Create distance and angle functions

Professional Development Workshop
© 1993 – 2018 KIPR290Page : #

The Create has a built-in sensor that measures
the distance traveled (in millimeters) and

the angle turned (in degrees).

get_create_distance()

// Tells us the distance the Create has traveled in mm.

set_create_distance(0);

// Resets the Create distance traveled to 0 mm.

get_create_total_angle()

// Tells us the total angle the Create has turned in degrees.

// Positive angles are to the left. Negative angles are to the right.

set_create_total_angle(0);

// Resets the Create angle turned to 0 degrees.

Create distance/angle functions

This is similar to the
motor position counter...

but better!

Professional Development Workshop
© 1993 – 2018 KIPR291Page : #

Using Create distance functions

int main()

{

create_connect();

set_create_distance(0);

while (get_create_distance() < 1000)

{

create_drive_direct(200, 200);

}

create_stop();

create_disconnect();

return 0;

}

What does this say?

Professional Development Workshop
© 1993 – 2018 KIPR292Page : #

Using Create angle functions

int main()

{

create_connect();

set_create_total_angle(0);

while (get_create_total_angle() < 90)

{

create_drive_direct(-200, 200);

}

create_stop();

create_disconnect();

return 0;

}

What does this say?

Professional Development Workshop
© 1993 – 2018 KIPR293Page : #

Using Create angle functions

int main()

{

create_connect();

set_create_total_angle(0);

while (get_create_total_angle() < 90)

{

create_drive_direct(-200, 200);

}

create_stop();

create_disconnect();

return 0;

}

Positive angles
are to the left

(counter-clockwise).

Professional Development Workshop
© 1993 – 2018 KIPR294Page : #

Using Create angle functions

int main()

{

create_connect();

set_create_total_angle(0);

while (get_create_total_angle() > -90)

{

create_drive_direct(200, -200);

}

create_stop();

create_disconnect();

return 0;

}

Negative angles
are to the right

(clockwise).

Notice:
the signs changed!

Professional Development Workshop
© 1993 – 2018 KIPR295Page : #295Page :

iRobot Create Sensors

Create sensor functions

Logical operators

Professional Development Workshop
© 1993 – 2018 KIPR296Page : #

To get Create sensor values, type get_create_sensor(),
replacing sensor with the name of the sensor

Create sensor functions

rcliff lcliff

lfcliffrfcliff

battery_capacity

lbumprbump

lwdroprwdrop

cwdrop

distance total_angle

rlightbump

rflightbump

rclightbump lclightbump

lflightbump

llightbump

Professional Development Workshop
© 1993 – 2018 KIPR297Page : #

get_create_lbump()

get_create_rbump()

// Tells us if the Create left/right bumper is pressed.

// Like a digital touch sensor.

get_create_lwdrop()

get_create_rwdrop()

get_create_cwdrop()

// Tells us if the Create left/right/center wheel is dropped.

// Like a digital touch sensor.

get_create_lcliff()

get_create_lfcliff()

get_create_rcliff()

get_create_rfcliff()

// Tells us the Create left/left-front/right/right-front cliff sensor value.

// Like an analog reflectance sensor.

get_create_battery_capacity()

// Tells us the Create battery level (0-100).

Create sensor functions

Professional Development Workshop
© 1993 – 2018 KIPR298Page : #

Using Create sensor functions

int main()

{

create_connect();

while (get_create_rbump() == 0)

{

create_drive_direct(100, 100);

}

create_stop();

create_disconnect();

return 0;

}

What does this say?

Professional Development Workshop
© 1993 – 2018 KIPR299Page : #

Description: Write a program for the KIPR Wallaby that drives the
Create forward until a bumper is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connect to Create. // 1. Connect to Create.

2. Loop: Is not bumped? // 2. Loop: Is not bumped?

1. Drive forward. // 2.1. Drive forward.

3. Stop motors. // 3. Stop motors.

4. Disconnect from Create. // 4. Disconnect from Create.

5. End the program. // 5. End the program.

Drive until bumped

Professional Development Workshop
© 1993 – 2018 KIPR300Page : #

Analysis: Flowchart

Drive until bumped

Is not
bumped?

Stop motors.

YES
NO

Begin

End

Return 0

Drive forward.

Disconnect from Create.

Connect to Create.

Professional Development Workshop
© 1993 – 2018 KIPR301Page : #

Solution:

Drive until bumped

int main()

{

// 1. Connect to Create.

// 2. Loop: Is not bumped?

// 2.1. Drive forward.

// 3. Stop motors.

// 4. Disconnect from Create.

// 5. End the program.

}

Comments

int main()

{

create_connect();

while (get_create_rbump() == 0)

{

create_drive_direct(200, 200);

}

create_stop();

create_disconnect();

return 0;

}

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR302Page : #

Make the iRobot Create move forward in a straight line
until it comes into contact with another object. Then have
it make a 90º turn and again travel in a straight line for
exactly 0.9 meters.

Activity 4 (connections to the game)

Professional Development Workshop
© 1993 – 2018 KIPR303Page : #303Page :

LUNCH

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/LCYB7RY

https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop
© 1993 – 2018 KIPR304Page : #304Page :

Color Camera

Using the color camera

Setting the color tracking channels

About color tracking

Camera functions

Professional Development Workshop
© 1993 – 2018 KIPR305Page : #

For this activity, you will need the camera.
• The camera plugs into one of the USB (type A) ports on the back of the Wallaby.

• Warning: Unplugging the camera while it is being accessed can freeze the
Wallaby, requiring it to be rebooted.

Color camera

USB Ports

Professional Development Workshop
© 1993 – 2018 KIPR306Page : #

Setting the color tracking channels

1. Select Settings

2. Select Channels

1

2

Professional Development Workshop
© 1993 – 2018 KIPR307Page : #

3. To specify a camera configuration, press the Add button.

4. Enter a configuration name, such as find_green, then press the
Ent button.

5. Highlight the new configuration and press the Edit button.

Setting the color tracking channels

3

4
5

Note: if there is more than one configuration, select one, and
press the “Default” button to make it be the one in use!

Professional Development Workshop
© 1993 – 2018 KIPR308Page : #

Setting the color tracking channels

6. Press the Add button to add a channel to the configuration.

7. Select HSV Blob Tracking, then OK to make this track color.

8. Highlight the channel, then press Configure to edit settings.
• The first channel is 0 by default. You can have up to four: 0, 1, 2, and 3.

6

7 8

Professional Development Workshop
© 1993 – 2018 KIPR309Page : #

Setting the color tracking channels

9. Place the colored object you want to track in front of the camera
and touch the object on the screen.
• A bounding box (dark blue) will appear around the selected object.

10. Press the Done button.

9

10

Professional Development Workshop
© 1993 – 2018 KIPR310Page : #

Verify the color channel is working

1. From the Home screen, press Motors and Sensors button.

2. Press the Camera button.

3. Objects specified by the configuration should have a bounding box.

1

3

2

Professional Development Workshop
© 1993 – 2018 KIPR311Page : #

• You can use the position of the object in relation to the
center x (column) of the image to tell if it is to the left or right.

• The image is 160 columns wide, so the center column (x-value) is 80.

• An x-value of 80 is straight ahead.

• An x-value between 0 and 79 is to the left.

• An x-value between 81 and 159 is to the right.

• You can also use the position of the object in relation to the center y (row) of
the image to tell how far away it is.

Tracking the location of an object

(0, 0) (159, 0)

(159, 119)(0, 119)

RightLeft

(80, 0)

(80, 119)

get_object_center_x(0, 0);

// The x-value of the tracked object.

// Note: number between 0 and 159.

Channel #

Object
0, 1, 2, …

(largest to smallest)

Professional Development Workshop
© 1993 – 2018 KIPR312Page : #

camera_open_black();

// Opens the connection to the black camera.

camera_close();

// Closes the connection to the camera.

camera_update();

// Gets a new picture (image) from the camera and performs color tracking.

get_object_count(channel #)

// The number of objects being tracked on the specified color channel.

get_object_center_x(channel #, object #)

// The center x (column) coordinate value of the object # on the color channel.

get_object_center_y(channel #, object #)

// The center y (row) coordinate value of the object # on the color channel.

Camera functions

Professional Development Workshop
© 1993 – 2018 KIPR313Page : #

Using camera functions

int main()

{

camera_open_black();

while (digital(8) == 0)

{

camera_update();

if (get_object_count(0) == 0)

{

printf("No objects detected.\n");

}

else

{

if (get_object_center_x(0, 0) < 80)

{

printf("Object is on the left!\n");

}

else

{

printf("Object is on the right!\n");

}

}

}

camera_close();

return 0;

}

What do these say?

Professional Development Workshop
© 1993 – 2018 KIPR314Page : #

Calibrate and program the robot and camera combination
so that it will turn on its axis in response to Botguy moving
to the left or right in front of it.

Activity 5 (connections to the game)

Professional Development Workshop
© 1993 – 2018 KIPR315Page : #315Page :

Logical Operators

Multiple Boolean tests

while, if, and Logical operators

Professional Development Workshop
© 1993 – 2018 KIPR316Page : #

Recall the Boolean test for while loops and if-else conditionals…

• The Boolean test (conditional) can contain multiple Boolean tests
combined using a “Logical operator”, such as:
•&& And

•|| Or

•! Not

• The next slide provides a cheat sheet for Logical operators.

Logical operators

while (Boolean test) if (Boolean test)

while ((Boolean test 1) && (Boolean test 2))

if ((Boolean test 1) || (!Boolean test 2))

We put parentheses (and)
around each Boolean test…

Professional Development Workshop
© 1993 – 2018 KIPR317Page : #

Boolean English Question True Example False Example

A && B Are both A and B true? true && true

true && false

false && true

false && false

A || B Is at least one of A or B true?
true || true

false || true

true || false

false || false

!(A && B) Is at least one of A or B false?
true && false

false && true

false && false

true && true

!(A || B) Are both of A and B false? false || false

true || true

false || true

true || false

! negates the true or false Boolean test.

Logical operators cheat sheet

Professional Development Workshop
© 1993 – 2018 KIPR318Page : #

while ((get_create_lbump() == 0) && (get_create_rbump() == 0))

{

// Code to execute ...

}

while ((digital(14) == 0) && (digital(15) == 0))

{

// Code to repeat ...

}

if ((digital(12) == 1) || (digital(13) != 0))

{

// Code to execute ...

}

if ((analog(3) < 512) || (digital(12) == 1))

{

// Code to repeat ...

}

while, if, and Logical operators
examples

Professional Development Workshop
© 1993 – 2018 KIPR319Page : #

Using Logical operators

int main()

{

create_connect();

while ((get_create_lbump() == 0) && (get_create_rbump() == 0))

{

create_drive_direct(100, 100);

}

create_stop();

create_disconnect();

return 0;

}

What does this say?

Professional Development Workshop
© 1993 – 2018 KIPR320Page : #

Description: Write a program for the KIPR Wallaby that drives the Create
forward for 1 meter or until a bumper is pressed, and then stops.
• How do we check for distance traveled? Answer: get_create_distance() < 1000

• How do we check for bumper pressed? Answer: get_create_rbump() == 0

• How do we check for that both are true?
Answer: ((get_create_distance()) < 1000) && (get_create_rbump() == 0))

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connect to Create. // 1. Connect to Create.

2. Loop: Is distance < 1000 AND not bumped? // 2. Loop: Is distance < 1000 AND not bumped?

1. Drive forward. // 2.1. Drive forward.

3. Stop motors. // 3. Stop motors.

4. Disconnect from Create. // 4. Disconnect from Create.

5. End the program. // 5. End the program.

Drive for distance or until bumped

Professional Development Workshop
© 1993 – 2018 KIPR321Page : #

Analysis: Flowchart

Drive for distance or until bumped

Is distance <
1000

AND not
bumped?

Stop motors.

YES
NO

Begin

End

Return 0

Drive forward.

Disconnect from Create.

Connect to Create.

Professional Development Workshop
© 1993 – 2018 KIPR322Page : #

Solution:

Drive for distance or until bumped

int main()

{

// 1. Connect to Create.

// 2. Loop: Is distance < 1000

// AND not bumped?

// 2.1. Drive forward.

// 3. Stop motors.

// 4. Disconnect from Create.

// 5. End the program.

}

Pseudocode (Comments)

int main()

{

// 1. Connect to Create.

create_connect();

// 2. Loop: Is distance < 1000 AND not bumped?

while ((get_create_distance() < 1000) && (get_create_rbump() == 0))

{

// 2.1. Drive forward.

create_drive_direct(200, 200);

} // end while

// 3. Stop motors.

create_stop();

// 4. Disconnect from Create.

create_disconnect();

// 5. End the program.

return 0;

} // end main

Source Code

Professional Development Workshop
© 1993 – 2018 KIPR323Page : #

Reflection: What did you notice after you ran the program?

• What happens if the Create right bumper is pressed before the Create travels a
distance of 1 meter?

• What happens if the Create right bumper is not pressed before the Create
travels a distance of 1 meter?

• What happens if the Create left bumper is pressed instead?

• How could you also check to see if the Create left bumper is pressed? Answer:

while ((get_create_distance() < 1000) && (get_create_lbump() == 0) && (get_create_rbump() == 0))

Drive for distance or until bumped

Professional Development Workshop
© 1993 – 2018 KIPR324Page : #

Mechanical Design

• At times you may have noticed that you solved problems
not through modifying your code but rather by making
changes to the mechanical design of your robot(s).

• The next couple slides provide some examples

• Additional resources may be found on the team home
base and online

• For example a great intro to Lego® technic design
patterns can be found at:

http://handyboard.com/oldhb/techdocs/artoflego.pdf

Professional Development Workshop
© 1993 – 2018 KIPR325Page : #

Counterbalance

motor/servo

coins

• Motors and servos have limited power

• Struggling to lift a structure?

• Use coins as a counterbalance

Professional Development Workshop
© 1993 – 2018 KIPR326Page : #

Gearing and Gear Trains

By “combining” gears into a “gear train”, using gears of
varying sizes you can INCREASE or DECREASE the speed and
power (torque) of your motors!

• If your motor gear is larger than the next
gear in the “gear train” the “driven gear”
spins FASTER but at the expense of LESS
torque (power).

• If your motor gear is smaller than your
next gear in the “gear train” the “driven
gear” spins SLOWER but with MORE
torque (power).

driven gear

motor/servo

driven gear

motor/servo

Professional Development Workshop
© 1993 – 2018 KIPR327Page : #

Gears to Increase Servo Range

• If you attach a larger gear to your servo spline and the
next gear in the “gear train” is smaller the range of the
servo is increased

• If the driven gear has ½ # of teeth as the servo gear you double
(x2) the range of the servo (now 360 degrees instead of 180
degrees).

driven gear

Servo gear

Professional Development Workshop
© 1993 – 2018 KIPR328Page : #328Page :

Resources and Support

Team Home Base

Remind, YAC, Community, PYR, and social media

T-shirts and awards

What to do after the workshop

Professional Development Workshop
© 1993 – 2018 KIPR329Page : #

Botball Team Home Base

Found at http://homebase.kipr.org

http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2018 KIPR330Page : #

KIPR Support
• E-mail: support@kipr.org

• Phone: 405-579-4609

• Hours: M-F, 8:30am-5:00pm CT

Forum and FAQ
• Site: http://homebase.kipr.org

• Content:
• Documentation Manual and Examples
• Presentation Rubric & Example Presentation
• DemoBot Build Instructions & Parts List
• Controller Getting Started Manual
• Construction Examples
• Hints for New Teams
• Sensor & Motor Manual
• Game Table Construction Documents
• All 2018 Game Documents

Botball Team Home Base

mailto:support@kipr.org
http://homebase.kipr.org/

Professional Development Workshop
© 1993 – 2018 KIPR331Page : #

• Greater Chicago: @gcbot18

• Greater DC: @gdcbot18

• Greater Los Angeles: @glabot18

• Greater San Diego: @gsdbot18

• Greater St. Louis: @gstlbot18

• Hawaii: @hbotball18

Botball Remind

https://www.remind.com/join
Botball General: @botball18

• New England: @nebot18

• New Mexico: @nmbot18

• New York/New Jersey: @njnybot18

• Northern California: @nocalbot18

• Oklahoma: @okbot18

• Texas: @texbot18

https://www.remind.com/join

Professional Development Workshop
© 1993 – 2018 KIPR333Page : #

Program Your Robot (PYR)

https://botballprogramming.org

http://botballprogramming.org/

Professional Development Workshop
© 1993 – 2018 KIPR334Page : #

Social media

Professional Development Workshop
© 1993 – 2018 KIPR335Page : #

Social media

Professional Development Workshop
© 1993 – 2018 KIPR336Page : #

Botball T-shirts

Notes:
•T-shirts are not provided.
•Teams may order shirts directly
via the link above

$12 to $14 per shirt

https://mnscustomapparel.com/products/official-2018-botball-tournament-tee

If schools are using a purchase order please contact MNS Custom Apparel
directly (service @ mnscustomapparel.com)

Professional Development Workshop
© 1993 – 2018 KIPR337Page : #

Tournament awards

Professional Development Workshop
© 1993 – 2018 KIPR338Page : #

• Tournament Awards
• Outstanding Documentation

• Seeding Rounds

• Double Elimination

• Overall (includes Documentation, Seeding, and Double Elimination)

• Judges’ Choice Awards (# of awards depends on # of teams)
• KISS Award

• Spirit of Botball

• Outstanding Engineering

• Outstanding Software

• Spirit

• Outstanding Design/Strategy/Teamwork

Tournament awards

There are a lot of opportunities for teams to win awards!

Professional Development Workshop
© 1993 – 2018 KIPR339Page : #

1. Recruit team members.
If you haven’t already recruited team members you can use the materials from
the workshop to show to interested students.

2. Hit the ground running.
• Do not wait to get started—time is of the essence!

• You only have a limited build time before the tournament.

• The workshop will still be fresh in your mind if you start now.

• Plan on meeting sometime during the first week after the workshop.

What to do after the workshop

Professional Development Workshop
© 1993 – 2018 KIPR340Page : #

3. Plan out the season.
• Students will not inherently know how to manage their time. Let’s face

it—it is difficult for many adults!

• Mark a calendar or make a Gannt chart with important dates:
• 1st online documentation submission due

• 2nd online documentation submission due

• 3rd online documentation submission due

• Tournament date

• Set dates and schedules for team meetings.

• Plan on meeting a minimum of 4 hours per week.

What to do after the workshop

Professional Development Workshop
© 1993 – 2018 KIPR341Page : #

4. Build the game board.
• If you can’t build the full game board, you can build ½ of the board.

• You could tape the outline of the board onto a floor if you have the right
type of flooring.

4. Organize your Botball kit.
• Organized parts can lead to faster and easier construction of robots.

4. Understand the game.
• Go over this with your students on the first meeting after the workshop.

What to do after the workshop

Professional Development Workshop
© 1993 – 2018 KIPR342Page : #342Page :

} // end workshop

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/LCYB7RY

Thanks and have a great season!

https://www.surveymonkey.com/r/LCYB7RY

